package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec_isa_x86_32/x86toDba.ml.html
Source file x86toDba.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open X86Types exception InstructionUnhandled = Decoder.InstructionUnhandled type instr_tbl = { mutable insertions : int; tbl : (string, unit) Hashtbl.t } let create_instr_tbl () = { insertions = 0; tbl = Hashtbl.create 7 } let _add instr_tbl instruction = instr_tbl.insertions <- instr_tbl.insertions + 1; Hashtbl.replace instr_tbl.tbl instruction () type instruction_stats = { handled : instr_tbl; unknown : instr_tbl } let ( _add_unknown_instruction, _add_handled_instruction, handled_instructions, unknown_instructions, pp_unknown_instructions, native_instructions_decoded ) = let stats = { handled = create_instr_tbl (); unknown = create_instr_tbl () } in ( (fun s -> _add stats.handled s), (fun s -> _add stats.unknown s), (fun () -> (stats.handled.insertions, Hashtbl.length stats.handled.tbl)), (fun () -> (stats.unknown.insertions, Hashtbl.length stats.unknown.tbl)), (fun fmt () -> let open Format in fprintf fmt "@[<hov 0>"; Hashtbl.iter (fun k _ -> fprintf fmt "%s;@ " k) stats.unknown.tbl; fprintf fmt "@]"), fun () -> stats.handled.insertions + stats.unknown.insertions ) let high_bit_8 = Int64.shift_left Int64.one 7 let higher_bit_8 = Int64.shift_left Int64.one 8 let high_bit_16 = Int64.shift_left Int64.one 15 let higher_bit_16 = Int64.shift_left Int64.one 16 let high_bit = Int64.shift_left Int64.one 31 let higher_bit = Int64.shift_left Int64.one 32 let temp_size size = Format.sprintf "temp%d" size let cpt_size size = Format.sprintf "cpt%d" size let size_mode m = match m with `M32 -> 32 | `M16 -> 16 | `M8 -> 8 let nbytes_mode m = match m with `M32 -> 4 | `M16 -> 2 | `M8 -> 1 let cst_of_int n size = let bv = Bitvector.create (Z.of_int n) size in Dba.Expr.constant bv let four_32 = cst_of_int 4 32 let cst_of_int64_32 n = let size = 32 in if Int64.logand n high_bit = Int64.zero then let bv = Bitvector.create (Z.of_int64 n) size in Dba.Expr.constant bv else let bv = Bitvector.create (Z.of_int64 (Int64.neg (Int64.sub higher_bit n))) size in Dba.Expr.constant bv let cst_of_int64_16 n = let size = 16 in if Int64.logand n high_bit_16 = Int64.zero then let bv = Bitvector.create (Z.of_int64 n) size in Dba.Expr.constant bv else let bv = Bitvector.create (Z.of_int64 (Int64.neg (Int64.sub higher_bit_16 n))) size in Dba.Expr.constant bv let cst_of_int64_8 n = let size = 8 in if Int64.logand n high_bit_8 = Int64.zero then let bv = Bitvector.create (Z.of_int64 n) size in Dba.Expr.constant bv else let bv = Bitvector.create (Z.of_int64 (Int64.neg (Int64.sub higher_bit_8 n))) size in Dba.Expr.constant bv let _is_too_big_shift cst size = match cst with | Dba.Expr.Cst bi -> Z.geq (Bitvector.value_of bi) (Z.of_int size) | _ -> false let _addr_of_int n = (Bitvector.create (Z.of_int n) 32, 0) let strange_bitvector_of_int64 n size = let v = if Int64.compare n Int64.zero = -1 then Int64.add higher_bit n else n in Bitvector.create (Z.of_int64 v) size let _strange_cst_of_int64 n size = let bv = strange_bitvector_of_int64 n size in Dba.Expr.constant bv let strange_addr_of_int64 n = let vaddr = Virtual_address.of_int64 n in Dba.JOuter (Dba_types.Caddress.block_start vaddr) let offsets_of_reg8 r = let i = X86Util.reg8_to_int r in if i < 4 then (0, 7, X86Util.int_to_reg32 i) else (8, 15, X86Util.int_to_reg32 (i - 4)) let offsets_of_reg16 r = match r with | X86Types.AX -> (0, 15, X86Types.EAX) | X86Types.CX -> (0, 15, X86Types.ECX) | X86Types.DX -> (0, 15, X86Types.EDX) | X86Types.BX -> (0, 15, X86Types.EBX) | X86Types.SP -> (0, 15, X86Types.ESP) | X86Types.BP -> (0, 15, X86Types.EBP) | X86Types.SI -> (0, 15, X86Types.ESI) | X86Types.DI -> (0, 15, X86Types.EDI) let offsets_of_reg16_32 = function | X86Types.EAX -> (0, 15, X86Types.EAX) | X86Types.ECX -> (0, 15, X86Types.ECX) | X86Types.EDX -> (0, 15, X86Types.EDX) | X86Types.EBX -> (0, 15, X86Types.EBX) | X86Types.ESP -> (0, 15, X86Types.ESP) | X86Types.EBP -> (0, 15, X86Types.EBP) | X86Types.ESI -> (0, 15, X86Types.ESI) | X86Types.EDI -> (0, 15, X86Types.EDI) let offsets_of_reg8_32 r = match r with | X86Types.EAX -> (0, 7, X86Types.EAX) | X86Types.ECX -> (0, 7, X86Types.ECX) | X86Types.EDX -> (0, 7, X86Types.EDX) | X86Types.EBX -> (0, 7, X86Types.EBX) | X86Types.ESP -> (8, 15, X86Types.EAX) (* CHECK THAT *) | X86Types.EBP -> (8, 15, X86Types.ECX) | X86Types.ESI -> (8, 15, X86Types.EDX) | X86Types.EDI -> (8, 15, X86Types.EBX) let lhs_of_seg s = Dba.LValue.var (X86Util.segment_reg_to_string s) ~bitsize:Size.Bit.bits16 let lhs_of_reg r mode = let bitsize = Size.Bit.bits32 in let mk_var name = Dba.LValue.var name ~bitsize in match mode with | `M32 -> X86Util.reg32_to_string r |> mk_var | `M16 -> let off1, off2, r32 = offsets_of_reg16_32 r in Dba.LValue._restrict (X86Util.reg32_to_string r32) bitsize off1 off2 | `M8 -> let off1, off2, r32 = offsets_of_reg8_32 r in Dba.LValue._restrict (X86Util.reg32_to_string r32) bitsize off1 off2 let lhs_of_reg32 r = Dba.LValue.var (X86Util.reg32_to_string r) ~bitsize:Size.Bit.bits32 let lhs_of_reg16 r = let off1, off2, r32 = offsets_of_reg16 r in Dba.LValue._restrict (X86Util.reg32_to_string r32) Size.Bit.bits32 off1 off2 let lhs_of_reg8 r = let off1, off2, r32 = offsets_of_reg8 r in Dba.LValue._restrict (X86Util.reg32_to_string r32) Size.Bit.bits32 off1 off2 let edi_lval = lhs_of_reg32 EDI let esi_lval = lhs_of_reg32 ESI let esp_lval = lhs_of_reg32 ESP let lhs_of_reg_xmm r reg_t = let open Size.Bit in match reg_t with | XMM -> Dba.LValue.var (X86Util.xmm_reg_to_string r) ~bitsize:bits128 | MM -> Dba.LValue.var (X86Util.mm_reg_to_string (X86Util.xmm_reg_to_mm_reg r)) ~bitsize:bits64 let bits80 = Size.Bit.create 80 let lhs_of_float_reg r = Dba.LValue.var (X86Util.float_reg_to_string r) ~bitsize:bits80 let _lhs_of_xmm_reg_restrict r off1 off2 = let open Size.Bit in Dba.LValue._restrict (X86Util.xmm_reg_to_string r) bits128 off1 off2 let lhs_of_flag f = Dba.LValue.var (X86Util.flag_to_string f) ~bitsize:Size.Bit.(if f = IOPL then create 2 else bits1) ~tag:Dba.Var.Tag.Flag let undef_flag flag = Predba.undefined (lhs_of_flag flag) let undef_flags flags = List.map undef_flag flags let expr_of_seg s = Dba.Expr.var (X86Util.segment_reg_to_string s) 16 let expr_of_reg mode r = let open Dba.Expr in match mode with | `M32 -> Dba.Expr.var (X86Util.reg32_to_string r) 32 | `M16 -> let off1, off2, r32 = offsets_of_reg16_32 r in restrict off1 off2 (var (X86Util.reg32_to_string r32) 32) | `M8 -> let off1, off2, r32 = offsets_of_reg8_32 r in restrict off1 off2 (var (X86Util.reg32_to_string r32) 32) let expr_of_reg32 = expr_of_reg `M32 let expr_of_reg16 r = let off1, off2, r32 = offsets_of_reg16 r in Dba.Expr.(restrict off1 off2 (var (X86Util.reg32_to_string r32) 32)) let expr_of_reg8 r = let off1, off2, r32 = offsets_of_reg8 r in Dba.Expr.restrict off1 off2 (Dba.Expr.var (X86Util.reg32_to_string r32) 32) let esp_expr = expr_of_reg32 ESP and ebp_expr = expr_of_reg32 EBP and esi_expr = expr_of_reg32 ESI and edi_expr = expr_of_reg32 EDI let e_of_reg addrMode r = let open Dba.Expr in match addrMode with | A32 -> var (X86Util.reg32_to_string r) 32 | A16 -> let off1, off2, r32 = offsets_of_reg16_32 r in let e = restrict off1 off2 (var (X86Util.reg32_to_string r32) 32) in uext 32 e (* FIXME: why is this conversion needed? *) let expr_of_reg_xmm r xmm = let open Dba.Expr in match xmm with | XMM -> var (X86Util.xmm_reg_to_string r) 128 | MM -> var (X86Util.xmm_reg_to_mm_reg r |> X86Util.mm_reg_to_string) 64 let expr_of_float_reg r = Dba.Expr.var (X86Util.float_reg_to_string r) 80 let expr_of_flag f = Dba_types.Expr.flag (X86Util.flag_to_string f) ~bits:Size.Bit.bits1 let cf_flag = expr_of_flag CF let pf_flag = expr_of_flag PF let af_flag = expr_of_flag AF let zf_flag = expr_of_flag ZF let sf_flag = expr_of_flag SF let of_flag = expr_of_flag OF type push_action = | U (* update flag *) | C (* always clear *) | K (* keep unchanged *) let eflags22, split_eflags = let flag = [| CF; PF; AF; ZF; SF; TF; IF; DF; OF; IOPL; NT; RF; VM; AC; VIF; VIP; ID |] and size = [| 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 1; 1; 1; 1; 1; 1; 1 |] and position = [| 0; 2; 4; 6; 7; 8; 9; 10; 11; 12; 14; 16; 17; 18; 19; 20; 21 |] and action = [| U; U; U; U; U; U; U; U; U; U; U; C; K; U; K; K; U |] and tag = Dba.Var.Tag.Flag in let rec iter1 i e = if i = Array.length flag then e else iter1 (i + 1) Dba.Expr.( logor e (shift_left (uext 22 (var ~tag (X86Util.flag_to_string flag.(i)) size.(i))) (cst_of_int position.(i) 22))) and iter2 i l e = if i = Array.length flag || position.(i) + size.(i) > Dba.Expr.size_of e then l else iter2 (i + 1) (if action.(i) = K then l else let f = Dba.LValue.var ~tag (X86Util.flag_to_string flag.(i)) ~bitsize:(Size.Bit.create size.(i)) in let e = if action.(i) = C then Dba.Expr.zeros size.(i) else Dba.Expr.restrict position.(i) (position.(i) + size.(i) - 1) e in Predba.assign f e :: l) e in (iter1 0 (cst_of_int 2 22), iter2 0 []) let expr_of_addr addr = let open Dba in let disp = addr.addrDisp in let expr_reg = e_of_reg addr.addrMode in match (disp = Int64.zero, addr.addrBase, addr.addrIndex) with | true, None, None -> Expr.zeros 32 | true, Some r, None -> expr_reg r | true, Some r1, Some (sc, r2) -> let bop = Expr.mul (expr_reg r2) (cst_of_int (X86Util.scale_to_size sc) 32) in Expr.add (expr_reg r1) bop | true, None, Some (Scale1, r) -> expr_reg r | true, None, Some (sc, r) -> Expr.mul (expr_reg r) (cst_of_int (X86Util.scale_to_size sc) 32) | false, _, _ -> ( match (addr.addrBase, addr.addrIndex) with | None, None -> cst_of_int64_32 disp | Some r, None -> Expr.add (expr_reg r) (cst_of_int64_32 disp) | Some r1, Some (Scale1, r2) -> Expr.add (expr_reg r1) (Expr.add (expr_reg r2) (cst_of_int64_32 disp)) | Some r1, Some (sc, r2) -> let bop = Expr.mul (expr_reg r2) (cst_of_int (X86Util.scale_to_size sc) 32) in let bop = Expr.add bop (cst_of_int64_32 disp) in Expr.add (expr_reg r1) bop | None, Some (Scale1, r) -> Expr.add (expr_reg r) (cst_of_int64_32 disp) | None, Some (sc, r) -> let bop = Expr.mul (expr_reg r) (cst_of_int (X86Util.scale_to_size sc) 32) in Expr.add bop (cst_of_int64_32 disp)) let cond_of_cc cc = let open Dba in let open Expr in match (cc.truth_value, cc.condition) with | true, O -> of_flag | false, O -> lognot of_flag | true, B -> cf_flag | false, B -> lognot cf_flag | true, Z -> zf_flag | false, Z -> lognot zf_flag | true, BE -> logor cf_flag zf_flag | false, BE -> logand (lognot cf_flag) (lognot zf_flag) | true, S -> sf_flag | false, S -> lognot sf_flag | true, P -> pf_flag | false, P -> lognot pf_flag | true, L -> Expr.diff sf_flag of_flag | false, L -> Expr.equal sf_flag of_flag | true, LE -> logor zf_flag (Expr.diff sf_flag of_flag) | false, LE -> logand (lognot zf_flag) (Expr.equal sf_flag of_flag) (* We represent the base of segments using a hidden register which is loaded only when the segment register changes, which corresponds to what the actual processor does. *) let segment_address sreg a = let open Dba in let name = X86Util.segment_reg_to_string sreg in let sreg = Expr.var (name ^ "_base") 32 in Expr.add sreg a let effective_address a sreg = match sreg with | Some ((FS | GS) as sr) -> segment_address sr a | None | Some _ -> a let lhs_of_mem mode ?(sreg = None) a = let a = effective_address a sreg in let nbytes = X86Util.bytesize_of_szmode mode in Dba.LValue.store nbytes Machine.LittleEndian a let lhs_of_mem32 = lhs_of_mem `M32 and lhs_of_mem16 = lhs_of_mem `M16 and lhs_of_mem8 = lhs_of_mem `M8 let lhs_of_mem_xmm mm a sreg = let a = effective_address a sreg in let nbytes = X86Util.bytesize_of_simd_size mm in Dba.LValue.store nbytes Machine.LittleEndian a let expr_of_mem (mode : X86Types.sizeMode) ?(sreg = None) a = let a = effective_address a sreg in let nbytes = X86Util.bytesize_of_szmode mode in Dba.Expr.load nbytes Machine.LittleEndian a let expr_of_mem32 = expr_of_mem `M32 and expr_of_mem16 = expr_of_mem `M16 and expr_of_mem8 = expr_of_mem `M8 let expr_of_mem_xmm mm ?(sreg = None) a = let a = effective_address a sreg in let nbytes = X86Util.bytesize_of_simd_size mm in Dba.Expr.load nbytes Machine.LittleEndian a let assign_flag flag e = Predba.assign (lhs_of_flag flag) e let assign_register register mode e = Predba.assign (lhs_of_reg register mode) e let fail_immediate_lvalue fname = let msg = Format.sprintf "%s: immediate cannot be lvalue" fname in failwith msg let disas_lval op mode sreg = match op with | Reg r -> lhs_of_reg r mode | Address a -> lhs_of_mem mode (expr_of_addr a) ~sreg | Imm _ -> fail_immediate_lvalue "disas_lval" let disas_lval_xmm op xmm_t size_t sreg = match op with | Reg r -> lhs_of_reg_xmm r xmm_t | Address a -> lhs_of_mem_xmm size_t (expr_of_addr a) sreg | Imm _ -> fail_immediate_lvalue "disas_lval_xmm" let disas_lval16 op sreg = match op with | Reg r -> lhs_of_reg16 r | Address a -> lhs_of_mem16 (expr_of_addr a) ~sreg | Imm _ -> fail_immediate_lvalue "disas_lval16" let disas_lval8 op sreg = match op with | Reg r -> lhs_of_reg8 r | Address a -> lhs_of_mem8 (expr_of_addr a) ~sreg | Imm _ -> fail_immediate_lvalue "disas_lval8" let disas_expr op mode sreg = match op with | Reg r -> expr_of_reg mode r | Address a -> expr_of_mem mode ~sreg (expr_of_addr a) | Imm i -> ( match mode with | `M32 -> cst_of_int64_32 i | `M16 -> cst_of_int64_16 i | `M8 -> cst_of_int64_8 i) let disas_expr_xmm op xmm_t size_t sreg = match op with | Reg r -> expr_of_reg_xmm r xmm_t | Address a -> expr_of_mem_xmm size_t ~sreg (expr_of_addr a) | Imm i -> assert (Int64.shift_right i 8 = Int64.zero); cst_of_int (Int64.to_int i) (Size.Bit.to_int (X86Util.bitsize_of_simd_size size_t)) let disas_expr16 op sreg = match op with | Reg r -> expr_of_reg16 r | Address a -> expr_of_mem16 (expr_of_addr a) ~sreg | Imm i -> cst_of_int64_16 i let disas_expr8 op sreg = match op with | Reg r -> expr_of_reg8 r | Address a -> expr_of_mem8 (expr_of_addr a) ~sreg | Imm i -> cst_of_int64_8 i let assign lhs rhs lo hi = let open Dba in let bytesize = Natural.to_int Basic_types.Constants.bytesize in match lhs with | LValue.Store (sz, endian, e, _) when lo land (bytesize - 1) = 0 && hi land (bytesize - 1) = bytesize - 1 -> let sz' = Size.(Byte.of_bitsize (Bit.create (hi - lo + 1))) in let o' = match endian with | Machine.LittleEndian -> lo / bytesize | Machine.BigEndian -> (sz - hi) / bytesize in let e' = Expr.add e (Expr.constant (Bitvector.of_int ~size:(Expr.size_of e) o')) in let lval = LValue.store sz' endian e' in Predba.assign lval rhs | LValue.Store (sz, endian, e, _) when lo land (bytesize - 1) = 0 -> let top = Expr.( restrict (hi + 1) ((bytesize * sz) - 1) (load (Size.Byte.create sz) endian e)) in let rhs = Expr.append top rhs in Predba.assign lhs rhs | LValue.Store (sz, endian, e, _) when hi land (bytesize - 1) = bytesize - 1 -> let bot = Expr.(restrict 0 (lo - 1) (load (Size.Byte.create sz) endian e)) in let rhs = Expr.append rhs bot in Predba.assign lhs rhs | LValue.Store (sz, endian, e, _) -> let old = Expr.load (Size.Byte.create sz) endian e in let top = Expr.restrict (hi + 1) ((bytesize * sz) - 1) old in let bot = Expr.restrict 0 (lo - 1) old in let rhs = Expr.(append top (append rhs bot)) in Predba.assign lhs rhs | LValue.Var v as lval -> let lval = if hi - lo + 1 = v.size then lval else LValue.restrict v lo hi in Predba.assign lval rhs | Dba.LValue.Restrict (v, { Interval.lo = o1; Interval.hi = _ }) -> let lo = o1 + lo and hi = o1 + hi in Predba.assign (LValue.restrict v lo hi) rhs let assign_xmm gop1 off1 off2 gop2 off3 off4 xmm mm sreg = let lhs = disas_lval_xmm gop1 xmm mm sreg in let rhs = Dba.Expr.restrict off3 off4 (disas_expr_xmm gop2 xmm mm sreg) in assign lhs rhs off1 off2 let assign_xmm_zero_ext ~dst off1 off2 ~src off3 off4 xmm mm sreg = match assign_xmm dst off1 off2 src off3 off4 xmm mm sreg with | Predba.Assign (Dba.LValue.Restrict (({ size; _ } as v), _), e) -> Predba.assign (Dba.LValue.v v) (Dba.Expr.uext size e) | res -> res let assign_xmm_expr gop1 lo hi expr xmm mm sreg = let lhs = disas_lval_xmm gop1 xmm mm sreg in assign lhs expr lo hi let assign_expr_expr gop1 off1 off2 expr _xmm _mm sreg = let lhs = disas_lval gop1 `M32 sreg in assign lhs expr off1 off2 let assign_expr_xmm gop1 off1 off2 gop2 off3 off4 xmm mm sreg = let lhs = disas_lval gop1 `M32 sreg in let rhs = Dba.Expr.restrict off3 off4 (disas_expr_xmm gop2 xmm mm sreg) in assign lhs rhs off1 off2 let clear_flag fl = Predba.assign (lhs_of_flag fl) (Dba.Expr.zeros 1) let update_CF op1 op2 _res size op = let open Dba in match op with | Add -> let sz = size + 1 in let op1' = Expr.uext sz op1 in let op2' = Expr.uext sz op2 in let sum' = Expr.add op1' op2' in assign_flag CF (Expr.bit_restrict size sum') | Adc -> let sz = size + 1 in let op1' = Expr.uext sz op1 in let op2' = Expr.uext sz op2 in let cf_flag = Expr.uext sz cf_flag in let sum' = Expr.add (Expr.add op1' op2') cf_flag in assign_flag CF (Expr.bit_restrict size sum') | Sub -> (* carry = 1 <-> A <_u B *) assign_flag CF (Dba.Expr.ult op1 op2) | Sbb -> (* carry = 1 <-> A <_u B + CF *) (* carry = 1 ? A =<_u B : A <_u B *) let cf_true = Expr.ule op1 op2 in let cf_false = Expr.ult op1 op2 in assign_flag CF (Expr.ite cf_flag cf_true cf_false) | Xor | Or | And -> clear_flag CF let update_OF op1 op2 res size op = let bit = size - 1 in let signbit1 = Dba.Expr.bit_restrict bit op1 and signbit2 = Dba.Expr.bit_restrict bit op2 and rres = Dba.Expr.bit_restrict bit res in match op with | Add | Adc -> (* ADC & ADD behaves the same for the OF flag *) (* ov=1 <-> A[n]=B[n] /\ A[n] \= (A+B)[n] *) assign_flag OF Dba.Expr.(logand (equal signbit1 signbit2) (diff signbit1 rres)) | Sub -> (* ov=1 <-> A[n]\= B[n] /\ A[n] \= (A-B)[n] *) assign_flag OF Dba.Expr.(logand (diff signbit1 signbit2) (diff signbit1 rres)) | Sbb -> (* ov=1 <-> A[n]\= B[n] /\ A[n] \= (A-B)[n] *) assign_flag OF Dba.Expr.(logand (diff signbit1 signbit2) (diff signbit1 rres)) | Xor | Or | And -> clear_flag OF let update_ZF res size = let open Dba in assign_flag ZF (Expr.equal res (Expr.zeros size)) let update_SF res size = assign_flag SF Dba.Expr.(slt res (zeros size)) (* Another way to update SF: Dba.ExprRestrict(res,size-1, size-1) *) let update_PF res _size = let open Dba in let rec xor_sum acc i = if i < 8 then xor_sum Expr.(logxor acc (bit_restrict i res)) (i + 1) else acc in let e = Expr.(lognot (xor_sum (bit_restrict 0 res) 1)) in assign_flag PF e let update_AF op1 op2 _res _size op = let op1_res = Dba.Expr.restrict 0 3 op1 in let op2_res = Dba.Expr.restrict 0 3 op2 in match op with | Add -> let open Dba in let op1_ext = Expr.uext 5 op1_res in let op2_ext = Expr.uext 5 op2_res in let sum = Expr.add op1_ext op2_ext in assign_flag AF (Expr.bit_restrict 4 sum) | Adc -> let open Dba in let op1_ext = Expr.uext 5 op1_res in let op2_ext = Expr.uext 5 op2_res in let af_flag_ext = Expr.uext 5 af_flag in let sum = Expr.add op1_ext (Expr.add op2_ext af_flag_ext) in assign_flag AF (Expr.bit_restrict 4 sum) | Sub -> assign_flag AF (Dba.Expr.ult op1_res op2_res) | Sbb -> let open Dba in let cf_true = Expr.ule op1_res op2_res in let cf_false = Expr.ult op1_res op2_res in assign_flag AF (Expr.ite af_flag cf_true cf_false) | Xor | Or | And -> clear_flag AF let affect_flags_inc op res size = [ update_OF op (cst_of_int 1 32) res size Add; update_SF res size; update_AF op (cst_of_int 1 32) res size Add; update_PF res size; update_ZF res size; ] let affect_flags_dec op res size = [ update_OF op (cst_of_int 1 32) res size Sub; update_SF res size; update_AF op (cst_of_int 1 32) res size Sub; update_PF res size; update_ZF res size; ] let affect_flags_arith op op1 op2 res size = match op with | Add -> [ update_OF op1 op2 res size Add; update_SF res size; update_ZF res size; update_AF op1 op2 res size Add; update_PF res size; update_CF op1 op2 res size Add; ] | Adc -> [ update_OF op1 op2 res size Adc; update_SF res size; update_ZF res size; update_AF op1 op2 res size Adc; update_PF res size; update_CF op1 op2 res size Adc; ] | Sub -> [ update_OF op1 op2 res size Sub; update_SF res size; update_ZF res size; update_AF op1 op2 res size Sub; update_PF res size; update_CF op1 op2 res size Sub; ] | Sbb -> [ update_OF op1 op2 res size Sbb; update_SF res size; update_ZF res size; update_AF op1 op2 res size Sbb; update_PF res size; update_CF op1 op2 res size Sbb; ] | And -> [ update_OF op1 op2 res size And; update_SF res size; update_ZF res size; update_AF op1 op2 res size And; update_PF res size; update_CF op1 op2 res size And; ] | Or -> [ update_OF op1 op2 res size Or; update_SF res size; update_ZF res size; update_AF op1 op2 res size Or; update_PF res size; clear_flag CF; ] | Xor -> [ update_OF op1 op2 res size Xor; update_SF res size; update_ZF res size; update_AF op1 op2 res size Xor; update_PF res size; clear_flag CF; ] let affect_flags_shift op expr shift res size = let open Dba in let shift = Expr.uext size (Expr.restrict 0 4 shift) in if Expr.(is_equal shift (zeros size)) then [] else let one_s = Expr.ones size in let shift_minus_one = Expr.sub shift one_s in let last_bit = match op with | Shl -> Expr.(bit_restrict (size - 1) (shift_left expr shift_minus_one)) | Shr | Sar -> Expr.(bit_restrict 0 (shift_right expr shift_minus_one)) in let affect_flags = [ update_SF res size; update_ZF res size; assign_flag CF last_bit; undef_flag AF; ] in if Expr.is_equal shift one_s then let overflow = match op with | Shl -> Expr.(logxor (bit_restrict (size - 1) res) last_bit) | Shr -> Expr.bit_restrict (size - 1) expr | Sar -> Expr.zero in assign_flag OF overflow :: affect_flags else Predba.undefined (lhs_of_flag OF) :: affect_flags let affect_flags_rotate op _expr rop res size = let open Dba in let inst_OF = if Dba_types.Expr.is_one rop then let sz = size - 1 in assign_flag OF Expr.(logxor (bit_restrict sz res) cf_flag) else undef_flag OF in let assign_to_cf e = assign_flag CF e in match op with | Rol -> [ assign_to_cf (Expr.bit_restrict 0 res); inst_OF; update_SF res size; update_ZF res size; ] | Ror -> [ assign_to_cf (Expr.bit_restrict (size - 1) res); inst_OF; update_SF res size; update_ZF res size; ] | Rcl -> [ assign_to_cf (Expr.bit_restrict size res); inst_OF ] | Rcr -> [ inst_OF; assign_to_cf (Expr.bit_restrict size res) ] let affect_flags_cmp op1 op2 res size = [ update_OF op1 op2 res size Sub; update_SF res size; update_ZF res size; update_AF op1 op2 res size Sub; update_PF res size; update_CF op1 op2 res size Sub; ] let affect_flags_test res size = [ clear_flag OF; update_SF res size; Predba.undefined (lhs_of_flag AF); update_PF res size; update_ZF res size; clear_flag CF; ] let affect_flags_mul res mode = let open Dba in let middle = size_mode mode in let res_res = Expr.restrict middle ((middle * 2) - 1) res in assign_flag OF Expr.(diff res_res (zeros (size_mode mode))) :: assign_flag CF of_flag :: undef_flags [ SF; ZF; AF; PF ] let affect_flags_imul res mode = let open Dba.Expr in let middle = size_mode mode in let extended_res = sext (middle * 2) (restrict 0 (middle - 1) res) in assign_flag OF (diff res extended_res) :: assign_flag CF of_flag :: undef_flags [ SF; ZF; AF; PF ] let affect_flags_div = undef_flags [ OF; SF; ZF; CF ] let affect_flags_neg op res size = let open Dba.Expr in [ assign_flag OF (equal op (constant (Bitvector.min_sbv size))); update_SF res size; update_ZF res size; assign_flag CF (diff op (zeros size)); ] let affect_flags_ptest xmm size op1 op2 sreg = let open Dba.Expr in let e1 = disas_expr_xmm op1 xmm size sreg in let e2 = disas_expr_xmm op2 xmm size sreg in let v = constant (Bitvector.zeros 128) in let c1 = equal (logand e1 e2) v in let c2 = equal (logand (lognot e1) e2) v in [ clear_flag OF; clear_flag SF; assign_flag ZF c1; assign_flag CF c2 ] let affect_flags_aad res = [ undef_flag OF; update_SF res 8; update_ZF res 8; undef_flag CF ] let pmovMSK gop1 gop2 xmm mm sreg = let rec aux acc i bound = if i >= bound then List.rev acc else let v = (8 * i) + 7 in let l = assign_expr_xmm gop1 i i gop2 v v xmm mm sreg in aux (l :: acc) (i + 1) bound in let assign_expr lo hi = assert (lo < hi); assign_expr_expr gop1 lo hi (Dba.Expr.zeros (1 + hi - lo)) xmm mm sreg in let start = X86Util.bytesize_of_xmm_mm xmm in aux [] 0 start @ [ assign_expr start 31 ] let mk_temp base size = (base ^ string_of_int size, size, Dba.Var.Tag.Temp) let mk_lhs_temp base size = let name, sz, tag = mk_temp base size in let bitsize = Size.Bit.create sz in Dba.LValue.var name ~bitsize ~tag let mk_res_temp base size = let name, sz, tag = mk_temp base size in Dba.Expr.var name sz ~tag let res_lhs mode = mk_lhs_temp "res" (size_mode mode) let res_expr mode = mk_res_temp "res" (size_mode mode) module type B = sig val base : string val tag : Dba.Var.Tag.t end module Bidirectional_name (X : B) = struct type t = { b_dst : Dba.LValue.t; b_src : Dba.Expr.t } open Size.Bit let mk = let i = ref 0 in fun bitsize -> incr i; let size = to_int bitsize in let name = Printf.sprintf "%s%d_%d" X.base !i size in (* dst is a L-value *) let b_dst = Dba.LValue.var name ~bitsize ~tag:X.tag in let b_src = Dba.Expr.var name size ~tag:X.tag in { b_dst; b_src } (* let mk8 () = mk bits8 * let mk16 () = mk bits16 * let mk32 () = mk bits32 *) let of_mode mode = let bitsize = X86Util.bitsize_of_szmode mode in mk bitsize let ( <-- ) t e = Predba.assign t.b_dst e let ( --> ) t lv = Predba.assign lv t.b_src end module Bidirectional_tmp = struct include Bidirectional_name (struct let base = "temp" let tag = Dba.Var.Tag.Temp end) end let lift_push mode genop sreg = let mem = Dba.Expr.sub esp_expr (cst_of_int (nbytes_mode mode) 32) in [ Predba.assign (lhs_of_mem mode mem) (disas_expr genop mode sreg); Predba.assign esp_lval mem; ] let lift_pushS reg _sreg = let e = Dba.Expr.sub esp_expr (cst_of_int 2 32) in [ Predba.assign (lhs_of_mem16 e) (expr_of_seg reg); Predba.assign esp_lval e ] let lift_pushA mode = let off = 8 * nbytes_mode mode in let _, seq = List.fold_left (fun (i, seq) reg -> ( i - nbytes_mode mode, Predba.assign (lhs_of_mem mode (Dba.Expr.sub esp_expr (cst_of_int i 32))) (expr_of_reg mode reg) :: seq )) ( off, [ Predba.assign esp_lval (Dba.Expr.sub esp_expr (cst_of_int off 32)) ] ) [ EDI; ESI; EBP; ESP; EBX; EDX; ECX; EAX ] in seq let lift_pop_aux mode lval = let esp_contents = expr_of_mem mode esp_expr in [ Predba.assign lval esp_contents; Predba.assign esp_lval (Dba.Expr.add esp_expr (cst_of_int (nbytes_mode mode) 32)); ] let lift_pop mode genop sreg = (* let sreg = match sreg with None -> Some SS | _ -> sreg in *) let lval = disas_lval genop mode sreg in match genop with | Reg ESP -> let esp_contents = expr_of_mem mode esp_expr in [ Predba.assign lval esp_contents ] | _ -> lift_pop_aux mode lval let lift_popS reg _sreg = (* let sreg = match sreg with None -> Some SS | _ -> sreg in *) [ Predba.assign (lhs_of_seg reg) (expr_of_mem16 esp_expr); Predba.assign esp_lval (Dba.Expr.add esp_expr (cst_of_int 2 32)); ] let lift_popA mode sreg = let word_size = (* in byte *) nbytes_mode mode in let aux_popa (n, register) = let lval = disas_lval (Reg register) mode sreg in let byte_offset = cst_of_int (n * word_size) 32 in let rval = Dba.Expr.add esp_expr byte_offset |> expr_of_mem ~sreg mode in Predba.assign lval rval in List.map aux_popa [ (0, EDI); (1, ESI); (2, EBP); (4, EBX); (5, EDX); (6, ECX); (7, EAX) ] @ [ Predba.assign esp_lval (Dba.Expr.add esp_expr (cst_of_int (8 * word_size) 32)); ] let lift_arith mode op gop1 gop2 sreg = let disassed_gop1 = disas_expr gop1 mode sreg in let disassed_gop2 = disas_expr gop2 mode sreg in let add_carry e = let open Dba in Expr.add e (Expr.uext (size_mode mode) cf_flag) in let rhs = match op with | Add -> Dba.Expr.add disassed_gop1 disassed_gop2 | Adc -> let dba_gop2_carry = add_carry disassed_gop2 in Dba.Expr.add disassed_gop1 dba_gop2_carry | Sub -> Dba.Expr.sub disassed_gop1 disassed_gop2 | Sbb -> let dba_gop2_carry = add_carry disassed_gop2 in Dba.Expr.sub disassed_gop1 dba_gop2_carry | And -> Dba.Expr.logand disassed_gop1 disassed_gop2 | Or -> Dba.Expr.logor disassed_gop1 disassed_gop2 | Xor -> Dba.Expr.logxor disassed_gop1 disassed_gop2 in let res = res_expr mode in Predba.assign (res_lhs mode) rhs :: affect_flags_arith op disassed_gop1 disassed_gop2 res (size_mode mode) @ [ Predba.assign (disas_lval gop1 mode sreg) (res_expr mode) ] let lift_shift mode shift_op gop32 gop8 sreg = let open Dba in let size = size_mode mode in let disassed_gop8 = disas_expr8 gop8 sreg in let disassed_gop32 = disas_expr gop32 mode sreg in let shift = Expr.uext size (Expr.restrict 0 4 disassed_gop8) in let dba_op = match shift_op with | Shl -> Expr.shift_left | Shr -> Expr.shift_right | Sar -> Expr.shift_right_signed in let res = res_expr mode in Predba.assign (res_lhs mode) (dba_op disassed_gop32 shift) :: affect_flags_shift shift_op disassed_gop32 disassed_gop8 res (size_mode mode) @ [ Predba.assign (disas_lval gop32 mode sreg) (res_expr mode) ] let lift_rotate mode rotate_op gop32 gop8 sreg = let open Dba in let size = size_mode mode in let sz = size + 1 in let bits = Size.Bit.create sz in let tmp = temp_size sz in let res_lhs_1 = LValue.temporary tmp bits in let res_expr_1 = Expr.temporary tmp ~size:sz in (* let res33_expr = Dba.ExprVar ("res33", 33, Some Dba.Temp) in *) let dba_op, dba_gop1, dba_gop2, size = match rotate_op with | Rol -> ( Dba.Binary_op.LeftRotate, disas_expr gop32 mode sreg, res_expr mode, size ) | Rcl -> let tmp = Expr.append cf_flag (disas_expr gop32 mode sreg) in ( Dba.Binary_op.LeftRotate, tmp, Expr.restrict 0 (size - 1) res_expr_1, sz ) | Ror -> ( Dba.Binary_op.RightRotate, disas_expr gop32 mode sreg, res_expr mode, size ) | Rcr -> let tmp = Expr.append cf_flag (disas_expr gop32 mode sreg) in ( Dba.Binary_op.RightRotate, tmp, Expr.restrict 0 (size - 1) res_expr_1, sz ) in let count = Expr.uext size (disas_expr8 gop8 sreg) in match rotate_op with | Rol | Ror -> let count_msb = match mode with `M8 -> 2 | `M16 -> 3 | `M32 -> 4 in let rop = Expr.(uext size (restrict 0 count_msb count)) in let res = res_expr mode in Predba.assign (res_lhs mode) (Expr.binary dba_op dba_gop1 rop) :: affect_flags_rotate rotate_op (disas_expr gop32) (disas_expr8 gop8 sreg) res (size_mode mode) @ [ Predba.assign (disas_lval gop32 mode sreg) dba_gop2 ] | Rcl | Rcr -> let rop = Expr.urem count (cst_of_int size size) in Predba.assign res_lhs_1 (Expr.binary dba_op dba_gop1 rop) :: affect_flags_rotate rotate_op (disas_expr gop32) (disas_expr8 gop8 sreg) res_expr_1 (size_mode mode) @ [ Predba.assign (disas_lval gop32 mode sreg) dba_gop2 ] let lift_shiftd mode shift_op dst src gop8 sreg = let open Dba in let size = size_mode mode in let esrc = disas_expr src mode sreg in let edst = disas_expr dst mode sreg in let ldst = disas_lval dst mode sreg in match disas_expr8 gop8 sreg with | Expr.Cst bv when Bitvector.ugt bv @@ Bitvector.of_int ~size:8 size -> Predba.undefined ldst :: undef_flags [ CF; OF; SF; AF; PF ] | count -> let count = Expr.(uext (2 * size) (restrict 0 4 count)) in let shift = match shift_op with | Shld -> Expr.(shift_left (append edst esrc)) | Shrd -> Expr.(shift_right (append esrc edst)) in let select = match shift_op with | Shld -> Expr.(restrict size ((2 * size) - 1) (shift count)) | Shrd -> Expr.(restrict 0 (size - 1) (shift count)) in let lres = res_lhs mode and eres = res_expr mode in let instrs = [ Predba.assign ldst eres ] in let instrs = if Expr.(is_equal count (zeros (2 * size))) then instrs else if Expr.(is_equal count (ones (2 * size))) then assign_flag CF (match shift_op with | Shld -> Expr.bit_restrict (size - 1) edst | Shrd -> Expr.bit_restrict 0 edst) :: update_SF eres size :: update_ZF eres size :: update_PF eres size :: assign_flag OF Expr.( diff (bit_restrict (size - 1) edst) (bit_restrict (size - 1) eres)) :: undef_flag AF :: instrs else if Expr.is_constant count then assign_flag CF (let count = Expr.(sub count (ones (2 * size))) in match shift_op with | Shld -> Expr.(bit_restrict ((2 * size) - 1) (shift count)) | Shrd -> Expr.(bit_restrict 0 (shift count))) :: update_SF eres size :: update_ZF eres size :: update_PF eres size :: undef_flag OF :: undef_flag AF :: instrs else Predba.conditional_jump Expr.(ugt count (cst_of_int size (2 * size))) (JInner 10) :: Predba.conditional_jump Expr.(equal count (zeros (2 * size))) (JInner 18) :: assign_flag CF (let count = Expr.(sub count (ones (2 * size))) in match shift_op with | Shld -> Expr.(bit_restrict ((2 * size) - 1) (shift count)) | Shrd -> Expr.(bit_restrict 0 (shift count))) :: update_SF eres size :: update_ZF eres size :: update_PF eres size :: Predba.conditional_jump Expr.(ugt count (ones (2 * size))) (JInner 15) :: assign_flag OF Expr.( diff (bit_restrict (size - 1) edst) (bit_restrict (size - 1) eres)) :: Predba.static_jump (JInner 16) :: Predba.undefined lres :: undef_flag CF :: undef_flag SF :: undef_flag ZF :: undef_flag PF :: undef_flag OF :: undef_flag AF :: instrs in Predba.assign lres select :: instrs let lift_cmp mode gop1 gop2 sreg = let rhs = Dba.Expr.sub (disas_expr gop1 mode sreg) (disas_expr gop2 mode sreg) in let res = res_expr mode in Predba.assign (res_lhs mode) rhs :: affect_flags_cmp (disas_expr gop1 mode sreg) (disas_expr gop2 mode sreg) res (size_mode mode) let lift_cmpXchg mode gop1 gop2 sreg = let eax_expr = expr_of_reg mode EAX in let e1 = disas_expr gop1 mode sreg in let res = res_expr mode in let open Dba in Predba.assign (res_lhs mode) (Expr.sub eax_expr e1) :: affect_flags_cmp (disas_expr gop1 mode sreg) (expr_of_reg mode EAX) res (size_mode mode) @ [ Predba.conditional_jump (Expr.equal eax_expr e1) (Dba.JInner 10); Predba.assign (lhs_of_reg EAX mode) e1; Predba.static_jump (Dba.JInner 11); Predba.assign (disas_lval gop1 mode sreg) (disas_expr gop2 mode sreg); ] let lift_test mode gop1 gop2 sreg = let rhs = Dba.Expr.logand (disas_expr gop1 mode sreg) (disas_expr gop2 mode sreg) in let res = res_expr mode in Predba.assign (res_lhs mode) rhs :: affect_flags_test res (size_mode mode) let lift_movd xmm pos gop1 gop2 sreg = match (pos, xmm) with | Left, MM -> [ assign_xmm_expr gop1 0 31 (disas_expr gop2 `M32 sreg) xmm S32 sreg; assign_xmm_expr gop1 32 63 (Dba.Expr.zeros 32) xmm S32 sreg; ] | Left, XMM -> [ assign_xmm_expr gop1 0 31 (disas_expr gop2 `M32 sreg) xmm S32 sreg; assign_xmm_expr gop1 32 127 (Dba.Expr.zeros 96) xmm S32 sreg; ] | Right, _ -> [ Predba.assign (disas_lval gop2 `M32 sreg) (Dba.Expr.restrict 0 31 (disas_expr_xmm gop1 xmm S32 sreg)); ] let mk_rhs_reg mode ereg = let cst = cst_of_int (nbytes_mode mode) 32 in Dba.(Expr.ite (expr_of_flag DF) (Expr.sub ereg cst) (Expr.add ereg cst)) let repeat_instrs rep addr nextaddr l = match rep with | NoRep -> l | _ -> let ecx = expr_of_reg32 ECX in let zf = expr_of_flag ZF in let pre_l = Predba.conditional_jump Dba.Expr.(equal ecx (zeros 32)) (Dba.JOuter nextaddr) in let self = Dba.JOuter (Dba_types.Caddress.of_virtual_address addr) in let post_l = [ Predba.assign (lhs_of_reg32 ECX) (Dba.Expr.sub ecx (cst_of_int 1 32)); (match rep with | NoRep -> assert false | Rep -> Predba.static_jump self | RepE -> Predba.conditional_jump zf self | RepNE -> Predba.conditional_jump (Dba.Expr.lognot zf) self); ] in (* assert l does not contain Jump instructions *) pre_l :: (l @ post_l) let lift_movs mode rep addr nextaddr sreg = (* Segment register for ESI can be overriden : see 3-489 *) let esi_reg = sreg (* Segment register for EDI is fixed : see 3-489 *) and edi_reg = Some X86Types.ES in repeat_instrs rep addr nextaddr @@ [ Predba.assign (lhs_of_mem mode edi_expr ~sreg:edi_reg) (expr_of_mem mode esi_expr ~sreg:esi_reg); Predba.assign esi_lval (mk_rhs_reg mode esi_expr); Predba.assign edi_lval (mk_rhs_reg mode edi_expr); ] let lift_lods mode rep addr nextaddr sreg = repeat_instrs rep addr nextaddr @@ [ Predba.assign (lhs_of_reg EAX mode) (expr_of_mem mode esi_expr ~sreg); Predba.assign esi_lval (mk_rhs_reg mode esi_expr); ] let lift_stos mode rep addr nextaddr sreg = repeat_instrs rep addr nextaddr @@ [ Predba.assign (lhs_of_mem mode edi_expr ~sreg) (expr_of_reg mode EAX); Predba.assign edi_lval (mk_rhs_reg mode edi_expr); ] let lift_cmps mode rep addr nextaddr sreg = let sreg = match sreg with None -> Some ES | _ -> sreg in let gop1 = expr_of_mem mode esi_expr ~sreg in let gop2 = expr_of_mem mode edi_expr ~sreg in let res = res_expr mode in repeat_instrs rep addr nextaddr @@ Predba.assign (res_lhs mode) (Dba.Expr.sub gop1 gop2) :: affect_flags_cmp gop1 gop2 res (size_mode mode) @ [ Predba.assign esi_lval (mk_rhs_reg mode esi_expr); Predba.assign edi_lval (mk_rhs_reg mode edi_expr); ] let lift_scas mode rep addr nextaddr sreg = let sreg = match sreg with None -> Some ES | _ -> sreg in let res = res_expr mode in repeat_instrs rep addr nextaddr @@ Predba.assign (res_lhs mode) (Dba.Expr.sub (expr_of_reg mode EAX) (expr_of_mem mode edi_expr ~sreg)) :: affect_flags_cmp (expr_of_reg mode EAX) (expr_of_mem mode edi_expr ~sreg) res (size_mode mode) @ [ Predba.assign edi_lval (mk_rhs_reg mode edi_expr) ] let lift_cmovcc mode cc gop1 gop2 _ sreg = let cond = cond_of_cc cc in let lhs = disas_lval gop1 mode sreg in let new_expr = disas_expr gop2 mode sreg in let old_expr = disas_expr gop1 mode sreg in [ Predba.assign lhs (Dba.Expr.ite cond new_expr old_expr) ] let lift_movsldup mm ~dst ~src sreg = [ assign_xmm dst 0 31 src 0 31 XMM mm sreg; assign_xmm dst 32 63 src 0 31 XMM mm sreg; assign_xmm dst 64 95 src 64 95 XMM mm sreg; assign_xmm dst 96 127 src 64 95 XMM mm sreg; ] let lift_palignr xmm mm ~dst ~src imm sreg = let hi = X86Util.bitsize_of_xmm_mm xmm - 1 in let combined = Dba.Expr.append (disas_expr_xmm dst xmm mm sreg) (disas_expr_xmm src xmm mm sreg) in let restricted = Dba.Expr.restrict (8 * imm) ((8 * imm) + hi) combined in [ assign_xmm_expr dst 0 hi restricted xmm mm sreg ] let lift_enter mode alloc level = let level = level land (32 - 1) in let nbytes = nbytes_mode mode and nbits = size_mode mode in let tail = assign_register EBP mode (expr_of_reg mode ESP) :: (match alloc + (level * nbytes) with | 0 -> [] | alloc -> [ assign_register ESP mode (Dba.Expr.sub (expr_of_reg mode ESP) (cst_of_int alloc nbits)); ]) in Predba.assign esp_lval (Dba.Expr.sub esp_expr (cst_of_int nbytes 32)) :: Predba.assign (lhs_of_mem mode esp_expr) (expr_of_reg mode EBP) :: (if level = 0 then tail else let addr = Dba.Expr.sub esp_expr (cst_of_int (nbytes * level) 32) in let tail = Predba.assign (lhs_of_mem mode addr) esp_expr :: tail in if level = 1 then tail else let addr = Dba.Expr.sub esp_expr (cst_of_int nbytes 32) in let lval = Dba.LValue.store (Size.Byte.create (nbytes * (level - 1))) Machine.LittleEndian addr in let addr = Dba.Expr.sub ebp_expr (cst_of_int nbytes 32) in let rval = Dba.Expr.load (Size.Byte.create (nbytes * (level - 1))) Machine.LittleEndian addr in Predba.assign lval rval :: tail) let lift_leave mode = [ assign_register ESP mode (expr_of_reg mode EBP); assign_register EBP mode (expr_of_mem mode esp_expr); Predba.assign esp_lval (Dba.Expr.add esp_expr (cst_of_int (nbytes_mode mode) 32)); ] let lift_call src nextaddr _sreg = let open Dba in (* let sreg = match sreg with None -> Some SS | _ -> sreg in *) [ Predba.assign esp_lval (Expr.sub esp_expr four_32); Predba.assign (lhs_of_mem32 esp_expr) (Expr.constant (Bitvector.create (Virtual_address.to_bigint nextaddr.Dba.base) 32)); (let tag = Some (Dba.Call nextaddr) in Predba.static_jump (strange_addr_of_int64 src) ?tag); ] let lift_dcall gop nextaddr sreg = let open Dba in (* let sreg = match sreg with None -> Some SS | _ -> sreg in *) let temp32_lv = LValue.var ~bitsize:Size.Bit.bits32 "temp32" in let temp32_rv = Expr.var "temp32" 32 in [ Predba.assign temp32_lv (disas_expr gop `M32 sreg); Predba.assign esp_lval (Expr.sub esp_expr four_32); Predba.assign (lhs_of_mem32 esp_expr) (Expr.constant (Bitvector.create (Virtual_address.to_bigint nextaddr.Dba.base) 32)); Predba.dynamic_jump temp32_rv ~tag:(Dba.Call nextaddr); ] let lift_ret _sreg = [ Predba.assign esp_lval (Dba.Expr.add esp_expr four_32); Predba.dynamic_jump (expr_of_mem32 (Dba.Expr.sub esp_expr four_32)) ~tag:Dba.Return; ] let lift_reti imm _sreg = (* let sreg = match sreg with None -> Some SS | _ -> sreg in *) let v = cst_of_int (4 + imm) 32 in [ Predba.assign esp_lval (Dba.Expr.add esp_expr v); Predba.dynamic_jump (expr_of_mem32 (Dba.Expr.sub esp_expr v)) ~tag:Dba.Return; ] let lift_retf _sreg = (* let sreg = match sreg with None -> Some SS | _ -> sreg in *) let open Dba in [ Predba.assign esp_lval (Expr.add esp_expr four_32); Predba.assign (lhs_of_seg CS) (expr_of_mem16 esp_expr); Predba.assign esp_lval (Expr.add esp_expr (cst_of_int 2 32)); Predba.dynamic_jump (expr_of_mem32 (Expr.sub esp_expr (cst_of_int 6 32))) ~tag:Dba.Return; ] let lift_retfi imm _sreg = let open Dba in let add_esp = Expr.add esp_expr in (* let sreg = match sreg with None -> Some SS | _ -> sreg in *) [ Predba.assign esp_lval (add_esp (cst_of_int (4 + imm) 32)); Predba.assign (lhs_of_seg CS) (expr_of_mem16 esp_expr); Predba.assign esp_lval (add_esp (cst_of_int 2 32)); Predba.dynamic_jump (expr_of_mem32 (Expr.sub esp_expr (cst_of_int (6 + imm) 32))) ~tag:Dba.Return; ] let lift_not mode gop sreg = (* let mask = *) (* match mode with *) (* | `M32 -> cst_of_int64_32 (Int64.of_string "0xffffffff") *) (* | `M16 -> cst_of_int64_16 (Int64.of_string "0xffff") *) (* | `M8 -> cst_of_int64_8 (Int64.of_string "0xff") *) (* in *) [ Predba.assign (disas_lval gop mode sreg) (Dba.Expr.lognot (disas_expr gop mode sreg)); ] let lift_neg mode gop sreg = Predba.assign (res_lhs mode) (Dba.Expr.uminus (disas_expr gop mode sreg)) :: affect_flags_neg (disas_expr gop mode sreg) (res_expr mode) (size_mode mode) @ [ Predba.assign (disas_lval gop mode sreg) (res_expr mode) ] let lift_inc mode gop sreg = let open Dba in let rmode = res_expr mode in Predba.assign (res_lhs mode) (Expr.add (disas_expr gop mode sreg) (Expr.ones (size_mode mode))) :: affect_flags_inc (disas_expr gop mode sreg) rmode (size_mode mode) @ [ Predba.assign (disas_lval gop mode sreg) rmode ] let lift_dec mode gop sreg = let rmode = res_expr mode in let open Dba in Predba.assign (res_lhs mode) (Expr.sub (disas_expr gop mode sreg) (Expr.ones (size_mode mode))) :: affect_flags_dec (disas_expr gop mode sreg) rmode (size_mode mode) @ [ Predba.assign (disas_lval gop mode sreg) rmode ] let lift_xchg mode gop1 gop2 sreg = let open Bidirectional_tmp in let size = X86Util.bitsize_of_szmode mode in let tmp1 = mk size and tmp2 = mk size in [ tmp1 <-- disas_expr gop1 mode sreg; tmp2 <-- disas_expr gop2 mode sreg; tmp2 --> disas_lval gop1 mode sreg; tmp1 --> disas_lval gop2 mode sreg; ] let lift_xmul ext affect_flags dst1_opt src1 mode src2 sreg = let open Dba in let size = size_mode mode in let double_size = 2 * size in let temp_lval = LValue.temp (Size.Bit.create double_size) in let temp_rval = LValue.to_expr temp_lval in let src1_rval = disas_expr src1 mode sreg and src2_rval = disas_expr src2 mode sreg in let flags_assigns = affect_flags temp_rval mode in Predba.assign temp_lval (Expr.mul (ext double_size src1_rval) (ext double_size src2_rval)) :: (match mode with | `M8 -> (* can only be F6 /5 or F6 /7 *) assert (dst1_opt = None); Predba.assign (lhs_of_reg EAX `M16) temp_rval :: flags_assigns | `M16 | `M32 -> ( match dst1_opt with | None -> Predba.assign (lhs_of_reg EAX mode) (Expr.restrict 0 (size - 1) temp_rval) :: Predba.assign (lhs_of_reg EDX mode) (Expr.restrict size (double_size - 1) temp_rval) :: flags_assigns | Some dst1 -> Predba.assign (disas_lval dst1 mode sreg) (Expr.mul src1_rval src2_rval) :: flags_assigns)) let lift_mul = lift_xmul Dba.Expr.uext affect_flags_mul None (Reg EAX) let lift_imul = lift_xmul Dba.Expr.sext affect_flags_imul let lift_xdiv div rem ext cond_err mode gop sreg = let open Dba in let size = size_mode mode in let double_size = 2 * size in let double_bitsize = Size.Bit.create double_size in let div_lval = LValue.temporary (Printf.sprintf "div%d" double_size) double_bitsize in let div_rval = LValue.to_expr div_lval in let quo_lval = LValue.temporary (Printf.sprintf "quo%d" double_size) double_bitsize in let quo_rval = LValue.to_expr quo_lval in let rem_lval = LValue.temporary (Printf.sprintf "rem%d" double_size) double_bitsize in let rem_rval = LValue.to_expr rem_lval in let src_expr = disas_expr gop mode sreg in let rval_dividend, lval_remainder = match mode with | `M8 -> (expr_of_reg16 AX, lhs_of_reg8 AH) | `M16 | `M32 -> ( Expr.append (expr_of_reg mode EDX) (expr_of_reg mode EAX), lhs_of_reg EDX mode ) in Predba.dynamic_assert (Expr.diff src_expr (Expr.zeros size)) :: Predba.assign div_lval rval_dividend :: Predba.assign quo_lval (div div_rval (ext double_size src_expr)) :: Predba.assign rem_lval (rem div_rval (ext double_size src_expr)) :: Predba.dynamic_assert (cond_err quo_rval) :: Predba.assign (lhs_of_reg EAX mode) (Expr.restrict 0 (size - 1) quo_rval) :: Predba.assign lval_remainder (Expr.restrict 0 (size - 1) rem_rval) :: affect_flags_div let lift_div = let cond_err res = let double_size = Dba.Expr.size_of res in let size = double_size / 2 in Dba.Expr.(equal (restrict size (double_size - 1) res) (zeros size)) in lift_xdiv Dba.Expr.udiv Dba.Expr.urem Dba.Expr.uext cond_err let lift_idiv = let cond_err res = let double_size = Dba.Expr.size_of res in let size = double_size / 2 in Dba.Expr.( equal (restrict size (double_size - 1) res) (sext size (bit_restrict (size - 1) res))) in lift_xdiv Dba.Expr.sdiv Dba.Expr.srem Dba.Expr.sext cond_err let lift_cbw mode = match mode with | `M32 -> [ assign_register EAX mode (Dba.Expr.sext 32 (expr_of_reg `M16 EAX)) ] | `M16 -> [ assign_register EAX mode (Dba.Expr.sext 16 (expr_of_reg `M8 EAX)) ] let lift_cwd mode = let size, name = match mode with `M32 -> (64, "temp64") | `M16 -> (32, "temp32") in let open Dba.Expr in let temp_lhs = Dba.LValue.temporary name (Size.Bit.create size) in let temp_exp = temporary name ~size in [ Predba.assign temp_lhs (sext size (expr_of_reg mode EAX)); assign_register EDX mode (restrict (size / 2) (size - 1) temp_exp); ] let lift_bsr mode dst src sreg = let src_exp = disas_expr src mode sreg in let dst_lhs = lhs_of_reg dst mode in let size = match mode with `M32 -> 31 | `M16 -> 15 | `M8 -> assert false in let open Dba.Expr in let sz = size + 1 in let bits = Size.Bit.create sz in let rec bsr_aux sz src exp i = if i = sz then exp else bsr_aux sz src (ite (restrict i i src) (cst_of_int i sz) exp) (i + 1) in let bsr sz src udef = bsr_aux sz src udef 0 in let udef = Dba.LValue.temporary (temp_size sz) bits in let res = bsr sz src_exp (Dba.LValue.to_expr udef) in [ Predba.undefined udef; assign_flag ZF (equal src_exp (zeros sz)); Predba.assign dst_lhs res; ] @ undef_flags [ CF; OF; SF ] let lift_bsf mode dst src sreg = let src_exp = disas_expr src mode sreg in let dst_lhs = lhs_of_reg dst mode in let size = match mode with `M32 -> 31 | `M16 -> 15 | `M8 -> assert false in let open Dba.Expr in let sz = size + 1 in let bits = Size.Bit.create sz in let rec bsf_aux sz src exp i = if i = 0 then exp else let i' = i - 1 in bsf_aux sz src (ite (restrict i' i' src) (cst_of_int i' sz) exp) i' in let bsf sz src udef = bsf_aux sz src udef sz in let udef = Dba.LValue.temporary (temp_size sz) bits in let res = bsf sz src_exp (Dba.LValue.to_expr udef) in [ Predba.undefined udef; assign_flag ZF (equal src_exp (zeros sz)); Predba.assign dst_lhs res; ] @ undef_flags [ CF; OF; SF ] let lift_bswap mode dst = let msize = X86Util.bitsize_of_mode mode in let size = Size.Bit.to_int msize in let tmp = temp_size size in let temp_lhs = Dba.LValue.temporary tmp msize in let temp_exp = Dba.Expr.temporary tmp ~size in let dst_exp = expr_of_reg mode dst in let rec assign acc dst temp off1 off2 = if off1 + 7 < size && off2 - 7 >= 0 then Predba.assign (Dba.LValue._restrict dst Size.Bit.bits32 off1 (off1 + 7)) (Dba.Expr.restrict (off2 - 7) off2 temp) :: assign acc dst temp (off1 + 8) (off2 - 8) else acc in Predba.assign temp_lhs dst_exp :: assign [] (X86Util.reg32_to_string dst) temp_exp 0 (size - 1) let lift_xadd mode gop1 gop2 sreg = let open Bidirectional_tmp in let tmp1 = of_mode mode and tmp2 = of_mode mode in let dba_gop1, dba_gop2 = (disas_expr gop1 mode sreg, disas_expr gop2 mode sreg) in (tmp1 <-- Dba.Expr.add dba_gop1 dba_gop2) :: (tmp2 <-- dba_gop1) :: affect_flags_arith Add (disas_expr gop1 mode sreg) (disas_expr gop2 mode sreg) tmp1.b_src (size_mode mode) @ [ tmp1 --> disas_lval gop1 mode sreg; tmp2 --> disas_lval gop2 mode sreg ] let lift_jcxz mode src = let size = size_mode mode in [ Predba.conditional_jump Dba.Expr.(equal (expr_of_reg mode ECX) (zeros size)) (strange_addr_of_int64 src); ] let lift_pshuf reg_t size_t r gop imm off_min off_max sreg = let size = match size_t with S128 -> 128 | S64 -> 64 | S32 -> 32 in let bits = Size.Bit.create size in let src_expr = disas_expr_xmm gop reg_t size_t sreg in let range = (off_max - off_min) / 4 in let open Dba in let rec assign acc dst src off1 off2 = let hi = off1 + range - 1 in if hi < off_max then let shift_temp1 = Expr.restrict off2 (off2 + 1) (cst_of_int imm 8) |> Expr.uext size in let shift_temp2 = cst_of_int range size in let shift = Expr.mul shift_temp1 shift_temp2 in let temp = Expr.shift_right src_expr shift in let acc = Predba.assign (Dba.LValue._restrict dst bits off1 hi) (Expr.restrict off_min (off_min + range - 1) temp) :: acc in assign acc dst src (off1 + range) (off2 + 2) else List.rev acc in let dst = match reg_t with | MM -> X86Util.mm_reg_to_string (X86Util.xmm_reg_to_mm_reg r) | XMM -> X86Util.xmm_reg_to_string r in let decoded = assign [] dst gop off_min 0 in if off_min > 0 then let lim = off_min - 1 in Predba.assign (Dba.LValue._restrict dst bits 0 lim) (Expr.restrict 0 lim src_expr) :: decoded else if off_max < size then decoded @ [ (let sz = size - 1 in Predba.assign (Dba.LValue._restrict dst bits off_max sz) (Expr.restrict off_max sz src_expr)); ] else decoded let lift_movshdup mm gop1 gop2 sreg = [ assign_xmm gop1 0 31 gop2 32 63 XMM mm sreg; assign_xmm gop1 32 63 gop2 32 63 XMM mm sreg; assign_xmm gop1 64 95 gop2 96 127 XMM mm sreg; assign_xmm gop1 96 127 gop2 96 127 XMM mm sreg; ] let lift_p f range xmm mm gop1 gop2 sreg = let size = X86Util.bitsize_of_xmm_mm xmm in let gop1_expr = disas_expr_xmm gop1 xmm mm sreg in let gop2_expr = disas_expr_xmm gop2 xmm mm sreg in let open Dba in let rec unroll acc off1 off2 = if off1 = size then acc else let temp1 = Expr.restrict off1 off2 gop1_expr in let temp2 = Expr.restrict off1 off2 gop2_expr in let expr = f temp1 temp2 in let acc = assign_xmm_expr gop1 off1 off2 expr xmm mm sreg :: acc in unroll acc (off1 + range) (off2 + range) in unroll [] 0 (range - 1) let lift_padd = lift_p Dba.Expr.add let lift_psub = lift_p Dba.Expr.sub let select_p f op1 op2 = Dba.Expr.ite (f op1 op2) op1 op2 let lift_pmaxu = lift_p @@ select_p Dba.Expr.ugt let lift_pmaxs = lift_p @@ select_p Dba.Expr.sgt let lift_pminu = lift_p @@ select_p Dba.Expr.ult let lift_pmins = lift_p @@ select_p Dba.Expr.slt let ssatured_add a b = let size = Dba.Expr.size_of a in let smax = Dba.Expr.constant (Bitvector.fill ~hi:(size - 2) size) and smin = Dba.Expr.constant (Bitvector.fill ~lo:(size - 1) size) in let tbp = Dba.Expr.(sge b (zeros size)) in let tsp = Dba.Expr.(sgt a (sub smax b)) and tsn = Dba.Expr.(slt a (sub smin b)) in let addab = Dba.Expr.add a b in Dba.Expr.(ite tbp (ite tsp smax addab) (ite tsn smin addab)) let lift_padds = lift_p ssatured_add let ssatured_sub a b = let size = Dba.Expr.size_of a in let smax = Dba.Expr.constant (Bitvector.fill ~hi:(size - 2) size) and smin = Dba.Expr.constant (Bitvector.fill ~lo:(size - 1) size) in let tbp = Dba.Expr.(sge b (zeros size)) in let tsp = Dba.Expr.(slt a (add smin b)) and tsn = Dba.Expr.(sgt a (add smax b)) in let subab = Dba.Expr.sub a b in Dba.Expr.(ite tbp (ite tsp smin subab) (ite tsn smax subab)) let lift_psubs = lift_p ssatured_sub let usatured_add a b = let size = Dba.Expr.size_of a in let umax = Dba.Expr.constant (Bitvector.fill size) in Dba.Expr.(ite (ugt a (sub umax b)) umax (add a b)) let lift_paddus = lift_p usatured_add let usatured_sub a b = let size = Dba.Expr.size_of a in let umin = Dba.Expr.zeros size in Dba.Expr.(ite (ult a b) umin (sub a b)) let lift_psubus = lift_p usatured_sub let avgu size a b = Dba.Expr.( restrict 1 size (add (add (uext (size + 1) a) (uext (size + 1) b)) (ones (size + 1)))) let lift_pavgu size = lift_p (avgu size) size let mulhw a b = Dba.Expr.(restrict 16 31 (mul (sext 32 a) (sext 32 b))) let lift_pmulhw = lift_p mulhw 16 let mulhrw a b = Dba.Expr.( restrict 16 31 (add (mul (sext 32 a) (sext 32 b)) (cst_of_int 0x8000 32))) let lift_pmulhrw = lift_p mulhrw 16 let lift_pmullw = lift_p Dba.Expr.mul 16 let lift_pmuludq xmm mm gop1 gop2 sreg = let range = 32 and drange = 64 in let size = X86Util.bitsize_of_xmm_mm xmm in let gop1_expr = disas_expr_xmm gop1 xmm mm sreg in let gop2_expr = disas_expr_xmm gop2 xmm mm sreg in let open Dba in let rec unroll acc off = if off >= size then acc else let temp1 = Expr.restrict off (off + range - 1) gop1_expr |> Expr.uext drange in let temp2 = Expr.restrict off (off + range - 1) gop2_expr |> Expr.uext drange in let res = Expr.mul temp1 temp2 in let acc = assign_xmm_expr gop1 off (off + drange - 1) res xmm mm sreg :: acc in unroll acc (off + drange) in unroll [] 0 let lift_ps_l f range xmm size gop1 gop2 sreg = let count = disas_expr_xmm gop2 xmm size sreg in let sz = X86Util.bitsize_of_xmm_mm xmm in let cond = Dba.Expr.ult count (cst_of_int range sz) in if Dba.Expr.(is_equal cond zero) then [ Predba.assign (disas_lval_xmm gop1 xmm size sreg) (Dba.Expr.zeros sz) ] else let count = Dba.Expr.restrict 0 (range - 1) count in let body = lift_p (fun a _ -> f a count) range xmm size gop1 gop2 sreg in if Dba.Expr.(is_equal cond one) then body else Predba.conditional_jump cond (Dba.JInner 3) :: Predba.assign (disas_lval_xmm gop1 xmm size sreg) (Dba.Expr.zeros sz) :: Predba.static_jump (Dba.JInner ((sz / range) + 3)) :: body let lift_psrl = lift_ps_l Dba.Expr.shift_right let lift_psll = lift_ps_l Dba.Expr.shift_left let lift_psra range xmm size gop1 gop2 sreg = let count = disas_expr_xmm gop2 xmm size sreg in let sz = X86Util.bitsize_of_xmm_mm xmm in let cond = Dba.Expr.ult count (cst_of_int range sz) in if Dba.Expr.(is_equal cond zero) then lift_p (fun a _ -> Dba.Expr.(sext range (slt a (zeros range)))) range xmm size gop1 gop2 sreg else let count = Dba.Expr.restrict 0 (range - 1) count in let body = lift_p (fun a _ -> Dba.Expr.shift_right_signed a count) range xmm size gop1 gop2 sreg in if Dba.Expr.(is_equal cond one) then body else Predba.conditional_jump cond (Dba.JInner 3) :: Predba.assign (disas_lval_xmm gop1 xmm size sreg) (Dba.Expr.zeros sz) :: Predba.static_jump (Dba.JInner ((sz / range) + 3)) :: body let lift_ps_ldq shift gop1 imm sreg = let lval = disas_lval_xmm gop1 XMM S128 sreg in let eval = disas_expr_xmm gop1 XMM S128 sreg in let v = if imm > 15 then Dba.Expr.zeros 128 else Dba.Expr.binary shift eval (cst_of_int (8 * imm) 128) in [ Predba.assign lval v ] let lift_ptest xmm size gop1 gop2 = affect_flags_ptest xmm size gop1 gop2 let lift_predicate p xmm mm lop rop sreg = let lvalue = disas_lval_xmm lop xmm mm sreg and l_e = disas_expr_xmm lop xmm mm sreg and r_e = disas_expr_xmm rop xmm mm sreg in let e = p l_e r_e in [ Predba.assign lvalue e ] let lift_pxor = lift_predicate Dba.Expr.logxor and lift_por = lift_predicate Dba.Expr.logor and lift_pand = lift_predicate Dba.Expr.logand and lift_pandn = lift_predicate (fun le re -> Dba.Expr.(logand (lognot le) re)) let lift_punpckl xmm size gop1 gop2 step sreg = let bitsize = X86Util.bitsize_of_xmm_mm xmm in let rec unroll acc off1 off2 = if off1 = bitsize then acc else let acc = assign_xmm gop1 (off1 + step) (off1 + (2 * step) - 1) gop2 off2 (off2 + step - 1) xmm size sreg :: assign_xmm gop1 off1 (off1 + step - 1) gop1 off2 (off2 + step - 1) xmm size sreg :: acc in unroll acc (off1 + (2 * step)) (off2 + step) in unroll [] 0 0 let lift_punpckh xmm size gop1 gop2 step sreg = let bitsize = X86Util.bitsize_of_xmm_mm xmm in let rec unroll acc off1 off2 = if off1 = 0 then acc else let acc = assign_xmm gop1 (off1 - (2 * step)) (off1 - step - 1) gop1 (off2 - step) (off2 - 1) xmm size sreg :: assign_xmm gop1 (off1 - step) (off1 - 1) gop2 (off2 - step) (off2 - 1) xmm size sreg :: acc in unroll acc (off1 - (2 * step)) (off2 - step) in unroll [] bitsize bitsize let lift_pack_s xmm size gop1 gop2 step sreg ~max ~satur1 ~min ~satur2 = let bitsize = X86Util.bitsize_of_xmm_mm xmm in let e1 = disas_expr_xmm gop1 xmm size sreg in let e2 = disas_expr_xmm gop2 xmm size sreg in let lv = disas_lval_xmm gop1 xmm size sreg in let rec unroll acc ex off1 off2 = let open Dba in if off1 = 0 then acc else let x' = Expr.restrict (2 * (off1 - step)) ((2 * off1) - step - 1) ex in let x = Expr.restrict (2 * (off1 - step)) ((2 * off1) - 1) ex in let test = Expr.sgt x max in let expr = Expr.ite test satur1 x' in let test = Expr.slt x min in let expr = Expr.ite test satur2 expr in let acc = assign lv expr (off2 - step) (off2 - 1) :: acc in unroll acc ex (off1 - step) (off2 - step) in unroll (unroll [] e2 (bitsize / 2) bitsize) e1 (bitsize / 2) (bitsize / 2) let lift_packus xmm size gop1 gop2 step sreg = let max = Dba.Expr.constant (Bitvector.fill ~hi:(step - 1) (2 * step)) in let satur1 = Dba.Expr.constant (Bitvector.fill step) in let min = Dba.Expr.zeros @@ (2 * step) in let satur2 = Dba.Expr.zeros step in lift_pack_s xmm size gop1 gop2 step sreg ~max ~satur1 ~min ~satur2 let lift_packss xmm size gop1 gop2 step sreg = let max = Dba.Expr.constant (Bitvector.fill ~hi:(step - 2) (2 * step)) in let satur1 = Dba.Expr.constant (Bitvector.fill ~hi:(step - 2) step) in let min = Dba.Expr.constant (Bitvector.fill ~lo:(step - 1) (2 * step)) in let satur2 = Dba.Expr.constant (Bitvector.fill ~lo:(step - 1) step) in lift_pack_s xmm size gop1 gop2 step sreg ~max ~satur1 ~min ~satur2 let lift_pmadd step ext1 ext2 add xmm size gop1 gop2 sreg = let bitsize = X86Util.bitsize_of_xmm_mm xmm in let e1 = disas_expr_xmm gop1 xmm size sreg in let e2 = disas_expr_xmm gop2 xmm size sreg in let lv = disas_lval_xmm gop1 xmm size sreg in let ep1 = Dba.Expr.temporary ~size:(2 * step) "dp1" and ep2 = Dba.Expr.temporary ~size:(2 * step) "dp2" in let lp1 = Dba.LValue.of_expr ep1 and lp2 = Dba.LValue.of_expr ep2 in let rec unroll acc off1 off2 = if off1 = bitsize then acc else let x0 = Dba.Expr.restrict off1 (off1 + step - 1) e2 in let y0 = Dba.Expr.restrict off1 (off1 + step - 1) e1 in let x1 = Dba.Expr.restrict (off1 + step) (off1 + (2 * step) - 1) e2 in let y1 = Dba.Expr.restrict (off1 + step) (off1 + (2 * step) - 1) e1 in let x0 = ext2 (2 * step) x0 in let y0 = ext1 (2 * step) y0 in let x1 = ext2 (2 * step) x1 in let y1 = ext1 (2 * step) y1 in let x0y0 = Dba.Expr.mul x0 y0 and x1y1 = Dba.Expr.mul x1 y1 in let expr = add ep1 ep2 in let acc = Predba.assign lp1 x0y0 :: Predba.assign lp2 x1y1 :: assign lv expr off1 (off1 + (2 * step) - 1) :: acc in unroll acc (off1 + (2 * step)) (off2 + step) in unroll [] 0 0 let lift_pmaddwd = lift_pmadd 16 Dba.Expr.sext Dba.Expr.sext Dba.Expr.add let lift_pmaddusbsw = lift_pmadd 8 Dba.Expr.uext Dba.Expr.sext ssatured_add let lift_pcmpeq = lift_p (fun a b -> Dba.Expr.(sext (size_of a) (equal a b))) let lift_pcmpgt = lift_p (fun a b -> Dba.Expr.(sext (size_of a) (ugt a b))) let lv_restrict_eax = let eax_size = Size.Bit.create 32 in Dba.LValue._restrict (X86Util.reg32_to_string EAX) eax_size let al_lval = lv_restrict_eax 0 7 let ah_lval = lv_restrict_eax 8 15 let e_restrict_eax lo hi = Dba.Expr.(restrict lo hi (var (X86Util.reg32_to_string EAX) 32)) let al_expr = e_restrict_eax 0 7 let ah_expr = e_restrict_eax 8 15 let lift_aad imm = let open Dba in let e1 = Expr.mul ah_expr (cst_of_int imm 8) in let e2 = Expr.add al_expr e1 in let e = Expr.logand e2 (cst_of_int 255 8) in [ Predba.assign al_lval e; Predba.assign ah_lval (Expr.zeros 8) ] @ affect_flags_aad al_expr let lift_aam imm = let open Dba in let v = cst_of_int imm 8 in let e1 = Expr.udiv al_expr v in let e2 = Expr.urem al_expr v in [ Predba.assign ah_lval e1; Predba.assign al_lval e2 ] @ affect_flags_aad al_expr let lift_address_mode = function A32 -> (32, `M32) | A16 -> (16, `M16) let lift_loop_cond cond a_mode src = let size, mode = lift_address_mode a_mode in [ Predba.assign (lhs_of_reg ECX mode) (Dba.Expr.sub (expr_of_reg mode ECX) (cst_of_int 1 size)); Predba.conditional_jump cond (strange_addr_of_int64 src); ] let loop_cond_e a_mode = let size, mode = lift_address_mode a_mode in Dba.Expr.(diff (expr_of_reg mode ECX) (zeros size)) let lift_loop a_mode _mode src = let cond = loop_cond_e a_mode in lift_loop_cond cond a_mode src let lift_loopz a_mode _mode src = let cond1 = loop_cond_e a_mode in let cond = Dba.Expr.logand zf_flag cond1 in lift_loop_cond cond a_mode src let lift_loopnz a_mode _mode src = let open Dba in let cond1 = loop_cond_e a_mode in let cond2 = Expr.lognot zf_flag in let cond = Expr.logand cond1 cond2 in lift_loop_cond cond a_mode src let lift_xlat addr_mode sreg = let open Dba in let al_expr = Expr.restrict 0 7 (expr_of_reg32 EAX) in let e = Expr.uext 32 al_expr in let ebx_expr = expr_of_reg32 EBX in match addr_mode with | A32 -> [ Predba.assign al_lval (expr_of_mem8 (Expr.add ebx_expr e) ~sreg) ] | A16 -> let ebx_expr = Expr.restrict 0 15 ebx_expr in let ebx_expr = Expr.uext 32 ebx_expr in [ Predba.assign al_lval (expr_of_mem8 (Expr.add ebx_expr e) ~sreg) ] let lift_fxch float_register = let open Dba_types in let operand1_lhs = lhs_of_float_reg float_register in let operand1_expr = expr_of_float_reg float_register in let operand2_lhs = lhs_of_float_reg ST0 in let operand2_expr = expr_of_float_reg ST0 in let name = "temp80" and size = Size.Bit.create 80 and vtag_opt = Dba.Var.Tag.Temp in let temp_lhs = Dba.LValue.var name ~bitsize:size ~tag:vtag_opt in let temp_expr = Expr.var name size vtag_opt in [ Predba.assign temp_lhs operand1_expr; Predba.assign operand1_lhs operand2_expr; Predba.assign operand2_lhs temp_expr; ] let lift_btX ~sreg mode base offset = let open Dba in let size = size_mode mode in let const_expr i = Expr.constant (Bitvector.of_int ~size i) in match base with | Reg _ -> ( let base_expr = disas_expr base mode sreg in match offset with | Imm i -> let i = Int64.to_int i land (size - 1) in let bit_select = Expr.bit_restrict i base_expr in (bit_select, bit_select, Expr.one) | Reg _ -> let off_expr = Expr.urem (disas_expr offset mode sreg) (Expr.constant (Bitvector.of_int ~size size)) in let bit_mask = Expr.(shift_left (ones size) off_expr) in let bit_select = Expr.(diff (zeros size) (logand base_expr bit_mask)) in (bit_select, base_expr, bit_mask) | Address _ -> assert false) | Imm _ -> assert false | Address a -> ( let base_addr = expr_of_addr a in let size_addr = Expr.size_of base_addr in let const_addr i = Expr.constant (Bitvector.of_int ~size:size_addr i) in let bytesize = Size.(Byte.(to_int (of_bitsize (Bit.create size)))) in match offset with | Imm i -> let i = Int64.to_int i in let off = Expr.( mul (const_addr bytesize) (udiv (const_addr i) (const_addr size))) and pos = i land (size - 1) in let base_expr = expr_of_mem mode ~sreg (Expr.add base_addr off) in let bit_mask = const_expr (1 lsl pos) in (Expr.bit_restrict pos base_expr, base_expr, bit_mask) | Reg _ -> let i = disas_expr offset mode sreg in let pos_expr = Expr.urem i (const_expr size) in let off_expr = Expr.( mul (const_addr bytesize) (udiv (uext size_addr i) (const_addr size))) in let base_expr = expr_of_mem mode ~sreg (Expr.add base_addr off_expr) in let bit_mask = Expr.(shift_left (ones size) pos_expr) in let bit_select = Expr.(diff (zeros size) (logand base_expr bit_mask)) in (bit_select, base_expr, bit_mask) | Address _ -> assert false) let undef_flags_bt = undef_flags [ OF; SF; AF; PF ] let lift_bt ~sreg { mode; src = offset; dst = base } = let bit_select, _, _ = lift_btX mode base offset ~sreg in assign_flag CF bit_select :: undef_flags_bt let lift_bts ~sreg { mode; src = offset; dst = base } = let bit_select, base_expr, bit_mask = lift_btX mode base offset ~sreg in let base_lhs = Dba.LValue.of_expr base_expr in let bit_set = Dba.Expr.logor base_expr bit_mask in assign_flag CF bit_select :: Predba.assign base_lhs bit_set :: undef_flags_bt let lift_btr ~sreg { mode; src = offset; dst = base } = let bit_select, base_expr, bit_mask = lift_btX mode base offset ~sreg in let base_lhs = Dba.LValue.of_expr base_expr in let bit_reset = Dba.Expr.(logand base_expr (lognot bit_mask)) in assign_flag CF bit_select :: Predba.assign base_lhs bit_reset :: undef_flags_bt let lift_btc ~sreg { mode; src = offset; dst = base } = let bit_select, base_expr, bit_mask = lift_btX mode base offset ~sreg in let base_lhs = Dba.LValue.of_expr base_expr in let bit_comp = Dba.Expr.logxor base_expr bit_mask in assign_flag CF bit_select :: Predba.assign base_lhs bit_comp :: undef_flags_bt (* assumes Real-Address Mode *) let lift_pushfd mode _sreg = let open Dba in (* let sreg = match sreg with None -> Some SS | _ -> sreg in *) let gen_code size = let nbits = Size.Bit.create size in let tmp_var = Dba.Var.temp nbits in let tmp_llow = LValue.restrict tmp_var 0 (min size 22 - 1) in let tmp_exp = Expr.v tmp_var in let eflags = Expr.( restrict 0 (min size 22 - 1) (logand (cst_of_int 0xfcffff 22) eflags22)) in let cst = cst_of_int (nbytes_mode mode) 32 in let code = [ Predba.assign tmp_llow eflags; Predba.assign (lhs_of_mem mode (Expr.sub esp_expr cst)) tmp_exp; Predba.assign esp_lval (Expr.sub esp_expr cst); ] in if size > 22 then Predba.undefined (LValue.v tmp_var) :: code else code in size_mode mode |> gen_code (* assumes Real-Address Mode *) let lift_popfd mode _sreg = (* let sreg = match sreg with None -> Some SS | _ -> sreg in *) let gen_code size = let nbits = Size.Bit.create size in let tmp_lhs = Dba.LValue.temp nbits in let tmp_exp = Dba.LValue.to_expr tmp_lhs in Predba.assign tmp_lhs (expr_of_mem mode esp_expr) :: Predba.assign esp_lval (Dba.Expr.add (expr_of_reg32 ESP) (cst_of_int (nbytes_mode mode) 32)) :: split_eflags tmp_exp in size_mode mode |> gen_code let lift_lsl mode _src dst sreg = match mode with | `M16 | `M32 -> [ Predba.non_deterministic (lhs_of_flag ZF); Predba.non_deterministic (disas_lval dst mode sreg); ] | `M8 -> failwith "decode lsl with operands on 8 bits" let lift_cmpXchg8b reg_t size_t gop sreg = match size_t with | S64 -> let open Dba in let dst_exp = disas_expr_xmm gop reg_t size_t sreg in let dst_lhs = disas_lval_xmm gop reg_t size_t sreg in let eax_expr = expr_of_reg32 EAX in let eax_lhs = lhs_of_reg32 EAX in let ebx_expr = expr_of_reg32 EBX in let ecx_expr = expr_of_reg32 ECX in let edx_expr = expr_of_reg32 EDX in let edx_lhs = lhs_of_reg32 EDX in let op = Expr.append edx_expr eax_expr in let op2 = Expr.append ecx_expr ebx_expr in let c = Expr.equal op dst_exp in [ Predba.conditional_jump c (Dba.JInner 5); Predba.assign (lhs_of_flag ZF) Dba.Expr.zero; Predba.assign eax_lhs (Expr.restrict 0 31 dst_exp); Predba.assign edx_lhs (Expr.restrict 32 63 dst_exp); Predba.static_jump (Dba.JInner 7); Predba.assign (lhs_of_flag ZF) Dba.Expr.one; Predba.assign dst_lhs op2; ] | _ -> failwith "lift_cmpXchg8b ?" let lift_lahf () = let eflags = [ sf_flag; zf_flag; Dba.Expr.zero; af_flag; Dba.Expr.zero; pf_flag; Dba.Expr.one; cf_flag; ] in List.mapi (fun i e -> let nth_bit = 15 - i in let lv = lv_restrict_eax nth_bit nth_bit in Predba.assign lv e) eflags let lift_sahf = let flag_bit_alist = [ (SF, 15); (ZF, 14); (AF, 12); (PF, 10); (CF, 8) ] in let eax_expr = expr_of_reg32 EAX in List.map (fun (flag, eax_bit) -> let rval = Dba.Expr.bit_restrict eax_bit eax_expr in assign_flag flag rval) flag_bit_alist let lift_salc () = [ Predba.assign (lhs_of_reg EAX `M8) (Dba.Expr.sext 8 cf_flag) ] let lift_movzx ~signed mode r e = let ext = if signed then Dba.Expr.sext else Dba.Expr.uext in let sz = size_mode mode in [ Predba.assign (lhs_of_reg r mode) (ext sz e) ] let lift_mov mode lop rop sreg = let lval = disas_lval lop mode sreg and rval = disas_expr rop mode sreg in [ Predba.assign lval rval ] let lift_aas () = let open Dba in let set_af_cf e = [ assign_flag AF e; assign_flag CF e ] in let eax_e = expr_of_reg32 EAX in let al_e = Expr.restrict 0 7 eax_e and ah_e = Expr.restrict 8 15 eax_e in let size = 8 in let byte_constant n = Expr.constant (Bitvector.create (Z.of_int n) size) in let v_6 = byte_constant 6 in let v_15 = byte_constant 15 in let check = Expr.logand al_e v_15 in let then_block = [ Predba.assign al_lval (Expr.sub al_e v_6); Predba.assign ah_lval (Expr.sub ah_e (Expr.ones size)); ] @ set_af_cf Expr.one and else_block = set_af_cf Expr.zero and last_instruction = [ Predba.assign al_lval check ] and cond = let loper = Expr.ugt check (byte_constant 9) in let roper = Expr.equal af_flag Expr.one in Expr.logor loper roper in (Predba.conditional_jump cond (Jump_target.inner 4) :: else_block) @ [ Predba.static_jump (Jump_target.inner 8) ] @ then_block @ last_instruction let lift_lea ~mode ~src ~dst sreg = let a = expr_of_addr src in let a = effective_address a sreg in let rv = match mode with | `M32 -> a | `M16 -> Dba.Expr.restrict 0 15 a | `M8 -> assert false in let lval = lhs_of_reg dst mode in [ Predba.assign lval rv ] let lift_movaps ~src ~dst simd_sz sreg = let lval = disas_lval_xmm dst XMM simd_sz sreg in match src with | Address addr -> let addr = expr_of_addr addr in let size = Dba.Expr.size_of addr in [ (* check that displacement is on a 16-byte boundary *) (Predba.dynamic_assert @@ Dba.Expr.(equal (urem addr (cst_of_int 16 size)) (zeros size))); Predba.assign lval @@ disas_expr_xmm src XMM simd_sz sreg; ] | Imm _ -> assert false | Reg _ -> [ Predba.assign lval @@ disas_expr_xmm src XMM simd_sz sreg ] let lift_popcnt mode gop1 gop2 sreg = let egop2 = disas_expr gop2 mode sreg in let lgop1 = disas_lval gop1 mode sreg in let eres = res_expr mode in let lres = res_lhs mode in let size = size_mode mode in let init = Predba.assign lres (Dba.Expr.zeros size) in let final = [ clear_flag OF; clear_flag SF; update_ZF egop2 size; clear_flag AF; clear_flag PF; clear_flag CF; Predba.assign lgop1 eres; ] in let rec unroll i sum = if i < 0 then sum else let open Dba in let rhs = Expr.add eres (Expr.uext size (Expr.bit_restrict i egop2)) in Predba.assign lres rhs :: sum |> unroll (i - 1) in init :: unroll (size - 1) final let lift_lzcnt mode gop1 gop2 sreg = let egop2 = disas_expr gop2 mode sreg in let lgop1 = disas_lval gop1 mode sreg in let size = size_mode mode in let etmp = Dba.Expr.temporary ~size @@ temp_size size in let ltmp = Dba.LValue.of_expr etmp in let ecpt = Dba.Expr.temporary ~size @@ cpt_size size in let lcpt = Dba.LValue.of_expr ecpt in [ Predba.assign lcpt (Dba.Expr.constant (Bitvector.of_int ~size size)); Predba.conditional_jump Dba.Expr.(equal egop2 (zeros size)) (Dba.JInner 8); Predba.assign lcpt (Dba.Expr.zeros size); Predba.assign ltmp egop2; Predba.conditional_jump Dba.Expr.(equal (bit_restrict (size - 1) etmp) one) (Dba.JInner 8); Predba.assign ltmp Dba.Expr.(shift_left etmp (ones size)); Predba.assign lcpt (Dba.Expr.add ecpt (Dba.Expr.ones size)); Predba.static_jump (Dba.JInner 4); undef_flag OF; undef_flag SF; assign_flag ZF Dba.Expr.(equal ecpt (zeros size)); undef_flag AF; undef_flag PF; assign_flag CF Dba.Expr.(equal egop2 (zeros size)); Predba.assign lgop1 ecpt; ] let lift_ldt base_name mode gop sreg = let base_addr_op = match gop with | Address ({ addrDisp; _ } as a) -> Address { a with addrDisp = Int64.add addrDisp @@ Int64.of_int 2 } | _ -> assert false in let egop = disas_expr base_addr_op mode sreg in (* FIXME: also handle the "limit" (i.e. size(, and not only the base. *) let base_reg = Dba.LValue.var base_name ~bitsize:Size.Bit.bits32 in [ Predba.assign base_reg egop ] let lift_pclmulqdq xmm size gop1 gop2 select sreg = let e1 = disas_expr_xmm gop1 xmm size sreg in let e2 = disas_expr_xmm gop2 xmm size sreg in let lv = disas_lval_xmm gop1 xmm size sreg in let ae = Dba.Expr.temporary ~size:64 "clmul_a" in let al = Dba.LValue.of_expr ae in let be = Dba.Expr.temporary ~size:128 "clmul_b" in let bl = Dba.LValue.of_expr be in let re = Dba.Expr.temporary ~size:128 "clmul_r" in let rl = Dba.LValue.of_expr re in let s1 = if select land 0x01 = 0 then Dba.Expr.restrict 0 63 e1 else Dba.Expr.restrict 64 127 e1 in let s2 = if select land 0x10 = 0 then Dba.Expr.restrict 0 63 e2 else Dba.Expr.restrict 64 127 e2 in [ Predba.assign al s1; Predba.assign bl @@ Dba.Expr.uext 128 s2; Predba.assign rl @@ Dba.Expr.zeros 128; Dba.Jump_target.inner 9 |> Predba.conditional_jump @@ Dba.Expr.equal ae @@ Dba.Expr.zeros 64; Dba.Jump_target.inner 6 |> Predba.conditional_jump @@ Dba.Expr.lognot @@ Dba.Expr.restrict 0 0 ae; Predba.assign rl @@ Dba.Expr.logxor re be; Predba.assign al @@ Dba.Expr.shift_right ae @@ Dba.Expr.ones 64; Predba.assign bl @@ Dba.Expr.shift_left be @@ Dba.Expr.ones 128; Predba.static_jump (Dba.Jump_target.inner 3); Predba.assign lv re; ] module MvSegLeft = struct type reg_dst = Normal of segment_reg | TaskReg end let lift_mv_seg_left_gen ~dst ~rv = (* FIXME: incomplete semantics, various checks are missing. *) let open MvSegLeft in let open Dba in let sel_lv, base_var, desc_var, desc_rv = match dst with | Normal seg -> let base_name = X86Util.segment_reg_to_string seg ^ "_base" in let desc_name = X86Util.segment_reg_to_string seg ^ "_desc" in ( lhs_of_seg seg, LValue.var base_name ~bitsize:Size.Bit.bits32, LValue.var desc_name ~bitsize:Size.Bit.bits64, Expr.var desc_name 64 ) | TaskReg -> ( LValue.var "tr" ~bitsize:Size.Bit.bits16, LValue.var "tr_base" ~bitsize:Size.Bit.bits32, LValue.var "tr_desc" ~bitsize:Size.Bit.bits64, Expr.var "tr_desc" 64 ) in (* Conditions for the checks. *) let sel_not_zero = Expr.(diff rv (zeros 16)) in (* Mask the 8 last bits. *) let index = Expr.logand rv @@ Expr.constant (Bitvector.create (Z.of_int 0xfffc) 16) in let gdt = Expr.var "gdt" 32 in let ldt = Expr.var "ldt" 32 in let cond = Expr.bit_restrict 2 rv in let gdt_or_ldt = Expr.ite cond ldt gdt in let base_address = Expr.add gdt_or_ldt (Expr.uext 32 index) in let tmp_lv = LValue.temporary "temp32" (Size.Bit.create 32) in let tmp_rv = Expr.temporary ~size:32 "temp32" in let desc = Expr.load (Size.Byte.create 8) Machine.LittleEndian tmp_rv in (* First chunk. *) let bits0_23 = let chunk = Expr.logand desc_rv (Expr.constant (Bitvector.create (Z.of_bits "\x00\x00\xff\xff\xff") (* "0x00_00_00_ff_ff_ff_00_00" *) 64)) in Expr.shift_right chunk (Expr.constant (Bitvector.create (Z.of_int 16) 64)) |> Expr.restrict 0 23 in let bits24_31 = let chunk = Expr.logand desc_rv (Expr.constant (Bitvector.create (Z.of_bits "\x00\x00\x00\x00\x00\x00\x00\xff") (* "0xff_00_00_00_00_00_00_00" *) 64)) in Expr.shift_right chunk (Expr.constant (Bitvector.create (Z.of_int 56) 64)) |> Expr.restrict 0 7 in let bits = Expr.append bits24_31 bits0_23 in [ Predba.assign sel_lv rv; Predba.dynamic_assert sel_not_zero; Predba.assign tmp_lv base_address; Predba.assign desc_var desc; Predba.assign base_var bits; ] let lift_mv_seg_left ~dst ~src sreg = let open MvSegLeft in lift_mv_seg_left_gen ~dst:(Normal dst) ~rv:(disas_expr16 src sreg) let lift_jmpf segment_selector dst_addr sreg = lift_mv_seg_left ~dst:CS ~src:(Imm (Int64.of_int segment_selector)) sreg @ [ Predba.static_jump (strange_addr_of_int64 dst_addr) ] let lift_ltr op sreg = let open MvSegLeft in lift_mv_seg_left_gen ~dst:TaskReg ~rv:(disas_expr16 op sreg) let lift_iret mode = let open MvSegLeft in let open Dba in (* FIXME: all cases not handled. This translation is only correct in protected mode, for returning to outer privilege level, without virtualization (VM = 0) or nested tasks (NT = 0) involved. *) (* FIXME: support 16-bit operand size *) assert (mode = `M32); let nxt_eip_lval = LValue.var ~bitsize:Size.Bit.bits32 "temp32_0" in let nxt_eip_rv = Expr.var "temp32_0" 32 in let tmp32_1_lval = LValue.var ~bitsize:Size.Bit.bits32 "temp32_1" in let nxt_eflags_lval = LValue.var ~bitsize:Size.Bit.bits32 "temp32_2" in let nxt_eflags_rv = Expr.var "temp32_2" 32 in let tmp32_1_rv = Expr.var "temp32_1" 32 in let tmp32_1_restr_rv = Expr.restrict 0 15 tmp32_1_rv in let nxt_esp_lval = LValue.temporary "temp32_3" Size.Bit.bits32 in let nxt_esp_rv = Expr.temporary ~size:32 "temp32_3" in let assign_flags = [ assign_flag CF (Expr.restrict 0 0 nxt_eflags_rv); assign_flag PF (Expr.restrict 2 2 nxt_eflags_rv); assign_flag AF (Expr.restrict 4 4 nxt_eflags_rv); assign_flag ZF (Expr.restrict 6 6 nxt_eflags_rv); assign_flag SF (Expr.restrict 7 7 nxt_eflags_rv); assign_flag TF (Expr.restrict 8 8 nxt_eflags_rv); assign_flag DF (Expr.restrict 10 10 nxt_eflags_rv); assign_flag OF (Expr.restrict 11 11 nxt_eflags_rv); assign_flag NT (Expr.restrict 14 14 nxt_eflags_rv); assign_flag RF (Expr.restrict 16 16 nxt_eflags_rv); assign_flag AC (Expr.restrict 18 18 nxt_eflags_rv); assign_flag ID (Expr.restrict 21 21 nxt_eflags_rv); (* FIXME: these updates are conditioned to the current values of CPL and * IOPL. *) assign_flag IF (Expr.restrict 9 9 nxt_eflags_rv); assign_flag IOPL (Expr.restrict 12 13 nxt_eflags_rv); assign_flag VIF (Expr.restrict 19 19 nxt_eflags_rv); assign_flag VIP (Expr.restrict 20 20 nxt_eflags_rv); ] in let cpl_lval = LValue.var ~bitsize:(Size.Bit.create 2) "cpl" in lift_pop_aux mode nxt_eip_lval @ lift_pop_aux mode tmp32_1_lval @ lift_mv_seg_left_gen ~dst:(Normal CS) ~rv:tmp32_1_restr_rv @ lift_pop_aux mode nxt_eflags_lval @ lift_pop_aux mode nxt_esp_lval @ lift_pop_aux mode tmp32_1_lval @ [ Predba.assign esp_lval nxt_esp_rv ] @ lift_mv_seg_left_gen ~dst:(Normal SS) ~rv:tmp32_1_restr_rv (* FIXME: check that EIP is within CS limit *) @ assign_flags @ [ Predba.assign cpl_lval @@ Expr.restrict 0 1 @@ expr_of_seg CS; Predba.dynamic_jump nxt_eip_rv; ] (* FIXME: segment selectors should be set to zero under some conditions *) (* PROTECTED-MODE: EIP ← Pop(); CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *) tempEFLAGS ← Pop(); RETURN-TO-OUTER-PRIVILEGE-LEVEL: IF OperandSize = 32 THEN ESP ← Pop(); SS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *) FI; IF new mode ≠ 64-Bit Mode THEN IF EIP is not within CS limit THEN #GP(0); FI; FI; EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS; IF OperandSize = 32 or or OperandSize = 64 THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI; IF CPL ≤ IOPL THEN EFLAGS(IF) ← tempEFLAGS; FI; IF CPL = 0 THEN EFLAGS(IOPL) ← tempEFLAGS; IF OperandSize = 32 or OperandSize = 64 THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI; FI; CPL ← CS(RPL); FOR each SegReg in (ES, FS, GS, and DS) DO tempDesc ← descriptor cache for SegReg (* hidden part of segment register *) IF (SegmentSelector == NULL) OR (tempDesc(DPL) < CPL AND tempDesc(Type) is (data or non-conforming code))) THEN (* Segment register invalid *) SegmentSelector ← 0; (*Segment selector becomes null*) FI; OD; END; *) let lift_load_far mode seg reg address = let address = expr_of_addr address in let bytesize = X86Util.bytesize_of_mode mode in let seg_part = Dba.Expr.( load (Size.Byte.create 2) Machine.LittleEndian (add address (cst_of_int (Size.Byte.to_int bytesize) (size_of address)))) in let offset = Dba.Expr.load bytesize Machine.LittleEndian address in lift_mv_seg_left_gen ~dst:(Normal seg) ~rv:seg_part @ [ assign_register reg mode offset ] let lift_mv_seg_right ~dst ~src sreg = (* Intel documentation on p.480 says: For the Pentium 4, Intel Xeon, and P6 family processors, the two high-order bytes are filled with zeros; for earlier 32-bit IA-32 processors, the two high order bytes are undefined. The encoding here will thus fill the high ordere bytes of reg with zeros if needed. *) let src size = Dba.Expr.uext size (expr_of_seg src) in match dst with | Reg r -> [ assign_register (X86Util.reg16_to_reg32 r) `M32 (src 32) ] | Address _ -> [ Predba.assign (disas_lval16 dst sreg) (src 16) ] | Imm _ -> assert false let instruction_to_dba sreg addr nextaddr opcode instruction = match instruction with | Push (mode, genop) -> lift_push mode genop sreg | PushS reg -> lift_pushS reg sreg | PushA mode -> lift_pushA (mode :> X86Types.sizeMode) | Pushfd mode -> lift_pushfd (mode :> X86Types.sizeMode) sreg | Pop (mode, genop) -> lift_pop mode genop sreg | PopS reg -> lift_popS reg sreg | PopA mode -> lift_popA (mode :> X86Types.sizeMode) sreg | Popfd mode -> lift_popfd (mode :> X86Types.sizeMode) sreg | Arith (mode, op, gop1, gop2) -> lift_arith mode op gop1 gop2 sreg | Aas -> lift_aas () | Aad imm -> lift_aad imm | Aam imm -> lift_aam imm | Shift (mode, shift_op, gop32, gop8) -> lift_shift mode shift_op gop32 gop8 sreg | Rotate (mode, rotate_op, gop32, gop8) -> lift_rotate mode rotate_op gop32 gop8 sreg | Shiftd (mode, shift_op, gop1, gop2, gop8) -> lift_shiftd mode shift_op gop1 gop2 gop8 sreg | Cmp (mode, gop1, gop2) -> lift_cmp mode gop1 gop2 sreg | Cmps (rep, mode) -> lift_cmps mode rep addr nextaddr sreg | CmpXchg (mode, gop1, gop2) -> lift_cmpXchg mode gop1 gop2 sreg | Test (mode, gop1, gop2) -> lift_test mode gop1 gop2 sreg | Movd (xmm, pos, gop1, gop2) -> lift_movd xmm pos gop1 gop2 sreg | MovQ (xmm, mm, dst, src) -> [ assign_xmm_zero_ext ~dst 0 63 ~src 0 63 xmm mm sreg ] | MovdQA (xmm, mm, gop1, gop2) | MovdQU (xmm, mm, gop1, gop2) -> [ assign_xmm gop1 0 127 gop2 0 127 xmm mm sreg ] | Movs (rep, mode) -> lift_movs mode rep addr nextaddr sreg | Lods (rep, mode) -> lift_lods mode rep addr nextaddr sreg | Stos (rep, mode) -> lift_stos mode rep addr nextaddr sreg | Scas (rep, mode) -> lift_scas mode rep addr nextaddr sreg | CMovcc (mode, cc, gop1, gop2) -> lift_cmovcc mode cc gop1 gop2 nextaddr sreg | Movaps (simd_sz, dst, src) -> lift_movaps ~src ~dst simd_sz sreg | Movlpd (mm, gop1, gop2) -> [ assign_xmm gop1 0 63 gop2 0 63 XMM mm sreg ] | Movlps (mm, gop1, gop2) -> [ assign_xmm gop1 0 63 gop2 0 63 XMM mm sreg ] | Movhlps (mm, gop1, gop2) -> [ assign_xmm gop1 0 63 gop2 64 127 XMM mm sreg ] | Movddup (mm, gop1, gop2) -> [ assign_xmm gop1 0 63 gop2 0 63 XMM mm sreg; assign_xmm gop2 64 127 gop2 0 63 XMM mm sreg; ] | Movsldup (mm, dst, src) -> lift_movsldup mm ~dst ~src sreg | Palignr (xmm, mm, dst, src, imm) -> lift_palignr xmm mm ~dst ~src imm sreg | Pcmpeqb (xmm, mm, gop1, gop2) -> lift_pcmpeq 8 xmm mm gop1 gop2 sreg | Pcmpeqw (xmm, mm, gop1, gop2) -> lift_pcmpeq 16 xmm mm gop1 gop2 sreg | Pcmpeqd (xmm, mm, gop1, gop2) -> lift_pcmpeq 32 xmm mm gop1 gop2 sreg | PmovMSKB (xmm, mm, gop1, gop2) -> pmovMSK gop1 gop2 xmm mm sreg | Pminu (xmm, mm, gop1, gop2, range) -> lift_pminu range xmm mm gop1 gop2 sreg | Pmins (xmm, mm, gop1, gop2, range) -> lift_pmins range xmm mm gop1 gop2 sreg | Pxor (xmm, mm, gop1, gop2) -> lift_pxor xmm mm gop1 gop2 sreg | Por (xmm, mm, gop1, gop2) -> lift_por xmm mm gop1 gop2 sreg | Pand (xmm, mm, gop1, gop2) -> lift_pand xmm mm gop1 gop2 sreg | Pandn (xmm, mm, gop1, gop2) -> lift_pandn xmm mm gop1 gop2 sreg | Pmaxu (xmm, mm, gop1, gop2, range) -> lift_pmaxu range xmm mm gop1 gop2 sreg | Pmaxs (xmm, mm, gop1, gop2, range) -> lift_pmaxs range xmm mm gop1 gop2 sreg | Mov (mode, gop1, gop2) -> lift_mov mode gop1 gop2 sreg | MovSegLeft (dst, src) -> lift_mv_seg_left ~dst ~src sreg | MovSegRight (dst, src) -> lift_mv_seg_right ~dst ~src sreg | Bt op2 -> lift_bt ~sreg op2 | Bts op2 -> lift_bts ~sreg op2 | Btr op2 -> lift_btr ~sreg op2 | Btc op2 -> lift_btc ~sreg op2 | Movzx (mode, r, op8) -> lift_movzx ~signed:false mode r (disas_expr8 op8 sreg) | Movzx16 (mode, r, op16) -> lift_movzx ~signed:false mode r (disas_expr16 op16 sreg) | Movsx (mode, r, op8) -> lift_movzx ~signed:true mode r (disas_expr8 op8 sreg) | Movsx16 (mode, r, op16) -> lift_movzx ~signed:true mode r (disas_expr16 op16 sreg) | Enter (mode, alloc, level) -> lift_enter (mode :> sizeMode) alloc level | Leave mode -> lift_leave (mode :> sizeMode) | Lea (mode, dst, src) -> lift_lea ~mode ~src ~dst sreg | LoadFarPointer (mode, seg, reg, address) -> lift_load_far mode seg reg address | Jmp src -> [ Predba.static_jump (strange_addr_of_int64 src) ] | DJmp gop -> [ Predba.dynamic_jump (disas_expr gop `M32 sreg) ] | Jmpf (segment_selector, dst_addr) -> lift_jmpf segment_selector dst_addr sreg | Jcc (cc, src) -> [ Predba.conditional_jump (cond_of_cc cc) (strange_addr_of_int64 src) ] | Call src -> lift_call src nextaddr sreg | DCall gop -> lift_dcall gop nextaddr sreg | Ret -> lift_ret sreg | Retf -> lift_retf sreg | Reti imm -> lift_reti imm sreg | Retfi imm -> lift_retfi imm sreg | SetCc (cc, dst) -> let lvalue = disas_lval8 dst sreg in let e = Dba.Expr.ite (cond_of_cc cc) (cst_of_int 1 8) (Dba.Expr.zeros 8) in [ Predba.assign lvalue e ] | Nop -> [] | Wait -> [] | Emms -> [] | Prefetch _ -> [] | Not (mode, gop) -> lift_not mode gop sreg | Neg (mode, gop) -> lift_neg mode gop sreg | Halt -> [ Predba.stop Dba.OK ] | Cmc -> [ assign_flag CF (Dba.Expr.lognot cf_flag) ] | Clc -> [ assign_flag CF Dba.Expr.zero ] | Stc -> [ assign_flag CF Dba.Expr.one ] | Cld -> [ assign_flag DF Dba.Expr.zero ] | Std -> [ assign_flag DF Dba.Expr.one ] | Inc (mode, gop) -> lift_inc mode gop sreg | Dec (mode, gop) -> lift_dec mode gop sreg | Xchg (mode, gop1, gop2) -> lift_xchg mode gop1 gop2 sreg | Mul (mode, gop) -> lift_mul mode gop sreg | IMul (mode, gop1_opt, gop2, gop3) -> lift_imul gop1_opt gop2 mode gop3 sreg | Div (mode, gop) -> lift_div mode gop sreg | IDiv (mode, gop) -> lift_idiv mode gop sreg | CBW mode -> lift_cbw mode | CWD mode -> lift_cwd mode | Bsr (mode, r, gop) -> lift_bsr (mode :> X86Types.sizeMode) r gop sreg | Bsf (mode, r, gop) -> lift_bsf (mode :> X86Types.sizeMode) r gop sreg | Bswap (mode, r) -> lift_bswap mode r | Xadd (mode, gop1, gop2) -> lift_xadd mode gop1 gop2 sreg | Jcxz (mode, src) -> lift_jcxz mode src | CmpXchg8b (reg_t, size_t, gop) -> lift_cmpXchg8b reg_t size_t gop sreg | Pshufw (reg_t, size_t, r, gop, imm) -> lift_pshuf reg_t size_t r gop imm 0 64 sreg | Pshuflw (reg_t, size_t, r, gop, imm) -> lift_pshuf reg_t size_t r gop imm 0 64 sreg | Pshufhw (reg_t, size_t, r, gop, imm) -> lift_pshuf reg_t size_t r gop imm 64 128 sreg | Pshufd (reg_t, size_t, r, gop, imm) -> lift_pshuf reg_t size_t r gop imm 0 128 sreg | Movntq (xmm, size, gop1, gop2) -> let lval = disas_lval_xmm gop1 xmm size sreg and e = disas_expr_xmm gop2 xmm size sreg in [ Predba.assign lval e ] | Movhpd (mm, gop1, gop2) | Movhps (mm, gop1, gop2) | Movlhps (mm, gop1, gop2) -> [ assign_xmm gop1 64 127 gop2 0 63 XMM mm sreg ] | Movshdup (mm, gop1, gop2) -> lift_movshdup mm gop1 gop2 sreg | Padd (xmm, mm, gop1, gop2, range) -> lift_padd range xmm mm gop1 gop2 sreg | Padds (xmm, mm, gop1, gop2, range) -> lift_padds range xmm mm gop1 gop2 sreg | Paddus (xmm, mm, gop1, gop2, range) -> lift_paddus range xmm mm gop1 gop2 sreg | Psub (xmm, mm, gop1, gop2, range) -> lift_psub range xmm mm gop1 gop2 sreg | Psubs (xmm, mm, gop1, gop2, range) -> lift_psubs range xmm mm gop1 gop2 sreg | Psubus (xmm, mm, gop1, gop2, range) -> lift_psubus range xmm mm gop1 gop2 sreg | Pavgu (xmm, mm, gop1, gop2, size) -> lift_pavgu size xmm mm gop1 gop2 sreg | Pmulhw (xmm, mm, gop1, gop2) -> lift_pmulhw xmm mm gop1 gop2 sreg | Pmulhrw (xmm, mm, gop1, gop2) -> lift_pmulhrw xmm mm gop1 gop2 sreg | Pmullw (xmm, mm, gop1, gop2) -> lift_pmullw xmm mm gop1 gop2 sreg | Pmuludq (xmm, mm, gop1, gop2) -> lift_pmuludq xmm mm gop1 gop2 sreg | Psrl (xmm, size, gop1, gop2, range) -> lift_psrl range xmm size gop1 gop2 sreg | Psll (xmm, size, gop1, gop2, range) -> lift_psll range xmm size gop1 gop2 sreg | Psra (xmm, size, gop1, gop2, range) -> lift_psra range xmm size gop1 gop2 sreg | Psrldq (gop, imm) -> lift_ps_ldq Dba.Binary_op.RShiftU gop imm sreg | Pslldq (gop, imm) -> lift_ps_ldq Dba.Binary_op.LShift gop imm sreg | Ptest (xmm, size, gop1, gop2) -> lift_ptest xmm size gop1 gop2 sreg | Punpckl (xmm, size, gop1, gop2, range) -> lift_punpckl xmm size gop1 gop2 range sreg | Punpckh (xmm, size, gop1, gop2, range) -> lift_punpckh xmm size gop1 gop2 range sreg | Packus (xmm, size, gop1, gop2, range) -> lift_packus xmm size gop1 gop2 range sreg | Packss (xmm, size, gop1, gop2, range) -> lift_packss xmm size gop1 gop2 range sreg | Pmaddwd (xmm, size, gop1, gop2) -> lift_pmaddwd xmm size gop1 gop2 sreg | Pmaddusbsw (xmm, size, gop1, gop2) -> lift_pmaddusbsw xmm size gop1 gop2 sreg | Pcmpgtb (xmm, size, gop1, gop2) -> lift_pcmpgt 8 xmm size gop1 gop2 sreg | Pcmpgtw (xmm, size, gop1, gop2) -> lift_pcmpgt 16 xmm size gop1 gop2 sreg | Pcmpgtd (xmm, size, gop1, gop2) -> lift_pcmpgt 32 xmm size gop1 gop2 sreg | Movups (gop1, gop2) | Movupd (gop1, gop2) -> [ Predba.assign (disas_lval_xmm gop1 XMM S128 sreg) (disas_expr_xmm gop2 XMM S128 sreg); ] | Loop (mode, addr_size, src) -> lift_loop addr_size mode src | Loopz (mode, addr_size, src) -> lift_loopz addr_size mode src | Loopnz (mode, addr_size, src) -> lift_loopnz addr_size mode src | Xlat addr_size -> lift_xlat addr_size sreg | Lsl (mode, src, dst) -> lift_lsl mode src dst sreg | Fld -> [ Predba.undefined (lhs_of_float_reg ST0) ] | Fxch float_register -> lift_fxch float_register | Lahf -> lift_lahf () | Sahf -> lift_sahf | Salc -> lift_salc () | Popcnt (mode, dest, src) -> lift_popcnt mode dest src sreg | Lzcnt (mode, dest, src) -> lift_lzcnt mode dest src sreg | Pclmulqdq (xmm, size, gop1, gop2, select) -> lift_pclmulqdq xmm size gop1 gop2 select sreg | Lgdt (mode, gop) -> lift_ldt "gdt" mode gop sreg | Lidt (mode, gop) -> lift_ldt "idt" mode gop sreg | Ltr op16 -> lift_ltr op16 sreg | Iret mode -> lift_iret mode | OutPortImm _imm8 -> (* FIXME: treat as noop for now. *) [] | OutPortDx -> (* FIXME: treat as noop for now. *) [] | Unsupported _ -> [ Predba.stop (Dba.Unsupported opcode) ] | Undecoded -> [ Predba.stop (Dba.Undecoded opcode) ] (* End instruction_to_dba *) let aux_decode ins addr nextaddr sreg opcode = instruction_to_dba sreg addr nextaddr opcode ins let decaux basic_instr addr sreg = let open X86Instruction in let nextaddr = Virtual_address.add_int (Size.Byte.to_int basic_instr.size) addr |> Dba_types.Caddress.of_virtual_address in aux_decode basic_instr.mnemonic addr nextaddr sreg basic_instr.opcode let x86decode = X86decoder.read let x86lift_from_reader addr reader = let binstr, sreg = x86decode addr reader in (* convert x86 IR -> DBA *) let insts = decaux binstr addr sreg in let nextaddr = Virtual_address.add_int (Size.Byte.to_int binstr.X86Instruction.size) addr |> Dba_types.Caddress.of_virtual_address in let block = Predba.blockify nextaddr insts in assert (Dhunk.Check.has_inbound_inner_jumps block); assert (Dhunk.Check.no_temporary_leak block); (binstr, block) let decode reader (addr : Virtual_address.t) = x86lift_from_reader addr reader (* addr_size in Bytes *) (* A base address of 0 is used here by default. *) let decode_binstream ?(base_addr : Virtual_address.t = Virtual_address.zero) hopc = try Reader.of_binstream hopc |> x86lift_from_reader base_addr with Failure s -> raise (InstructionUnhandled s) let () = Decoder.register Machine.x86 (fun addr reader -> let binstr, block = decode addr reader in (X86Instruction.to_generic_instruction binstr, block))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>