package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec_isa_riscv/riscv_to_dba.ml.html
Source file riscv_to_dba.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (** Instruction set decoder, parametrized by the register size *) module Riscv_to_Dba (M : Riscv_arch.RegisterSize) = struct (** Register size *) let mode = M.size (** Register size (in bits) *) let mode_size = Riscv_arch.Mode.size mode let fail msg = let msg = Printf.sprintf "Risc-V %d: %s" mode_size msg in failwith msg let assert_size size name = if mode <> size then fail (Printf.sprintf "%s only available in %d mode" name (Riscv_arch.Mode.size size)) let assert_mode_is_64 = assert_size Riscv_arch.Mode.m64 module De = Dba.Expr module Di = Dba.Instr module Bv = struct include Bitvector let extract : t -> int Interval.t -> t = fun bv { hi; lo } -> extract ~hi ~lo bv end module Rar = Riscv_arch.Register (M) module StrMap = Basic_types.String.Map module L = Isa_logger.Sub (struct let name = "riscv" end) (* In 64 mode, a few operation work on 32 bit values then sign extend them *) let to_32 x = De.restrict 0 31 x let sext x = De.sext mode_size x (* Instruction size *) module Isz = struct type t = I16 | I32 let bytes = function I16 -> 2 | I32 -> 4 end module D_status = struct type t = { addr : Virtual_address.t; isz : Isz.t } let addr t = t.addr let bysz t = Isz.bytes t.isz let create ?(isz = Isz.I32) va = { addr = va; isz } let switch isz t = { t with isz } let switch16 = switch Isz.I16 let switch32 = switch Isz.I32 let next t = Virtual_address.add_int (bysz t) (addr t) end (* let mode_bits = Size.Bit.create mode_size *) (* let mode_bytes = Size.Byte.of_bitsize mode_bits *) let mk_bv ?(size = mode_size) v = Bitvector.create v size let mk_cst ?(size = mode_size) extend bv = De.constant (extend bv size) let mk_imm ?(size = mode_size) = mk_cst ~size Bv.extend_signed let _mk_offset = mk_cst Bv.extend_signed let _mk_uint = mk_cst Bv.extend let scale_by n bv = let bvn = Bitvector.of_int ~size:(Bv.size_of bv) n in Bv.mul bv bvn let uint bv = let v = Bv.value_of bv |> Z.to_int in assert (v >= 0); v module D = struct type label = string type jt = E of Dba.Expr.t | C of Virtual_address.t | L of string type inst = | Asg of Dba.Expr.t * Dba.Expr.t (* Asg(dst, src) *) | Jcc of Dba.Expr.t * Virtual_address.t | Jmp of jt * Dba.tag | Lab of label * inst | Nop let _label = let n = ref (-1) in fun () -> incr n; L ("l" ^ string_of_int !n) let ( <-- ) dst src = if Dba.Expr.is_equal dst src then Nop else Asg (dst, src) let jmp ?(tag = Dba.Default) j = Jmp (j, tag) let ejmp ?tag e = jmp ?tag (E e) let cjmp ?tag c = jmp ?tag (C c) let aoff ?(offset = Bv.zero) va = let ve = De.constant (mk_bv (Virtual_address.to_bigint va)) in if Bv.is_zero offset then ve else De.add ve (mk_imm offset) let vajmp ?tag ?(offset = 0) va = cjmp ?tag (Virtual_address.add_int offset va) let _ljmp l = jmp (L l) let lab label inst = match inst with | Lab _ -> raise (Invalid_argument "label") | _ -> Lab (label, inst) let is_zero_var v = v.Dba.Var.name = "zero" let zero_cst = De.zeros mode_size let rec replace_zero e = match e with | De.Var v when is_zero_var v -> zero_cst | De.Var _ -> e | De.Load (size, endianness, expr, array) -> let e = replace_zero expr in De.load (Size.Byte.create size) endianness e ?array | De.Cst _ -> e | De.Unary (uop, e) -> let e = replace_zero e in De.unary uop e | De.Binary (bop, e1, e2) -> let e1 = replace_zero e1 in let e2 = replace_zero e2 in De.binary bop e1 e2 | De.Ite (cond, then_, else_) -> let cond = replace_zero cond in let then_ = replace_zero then_ in let else_ = replace_zero else_ in De.ite cond then_ else_ let rec to_dba_instr instr ?id lbl_id = match instr with | Asg (src, dst) -> assert (Dba.LValue.is_expr_translatable src); let lval = Dba.LValue.of_expr src in let is_zero = match lval with | Dba.LValue.Var v | Dba.LValue.Restrict (v, _) -> is_zero_var v | _ -> false in if is_zero then None else let lval = match lval with | Dba.LValue.Var _ | Dba.LValue.Restrict _ -> lval | Dba.LValue.Store (sz, endianness, e, array) -> let e = replace_zero e in Dba.LValue.store (Size.Byte.create sz) endianness e ?array in let dst = replace_zero dst in let id = match id with | None -> raise (Invalid_argument "to_dba_instr") | Some i -> i in Some (Di.assign lval dst (id + 1)) | Jcc (cc, c) -> let id = match id with | None -> raise (Invalid_argument "to_dba_instr") | Some i -> i in Some (Di.ite (replace_zero cc) (JOuter (Dba_types.Caddress.of_virtual_address c)) (id + 1)) | Jmp (jt, tag) -> Some (match jt with | E e -> Di.dynamic_jump ~tag (replace_zero e) | C c -> Di.static_jump ~tag Dba.(JOuter (Dba_types.Caddress.of_virtual_address c)) | L l -> Di.static_inner_jump (StrMap.find l lbl_id)) | Lab (_, i) -> to_dba_instr i lbl_id | Nop -> None let pp_e = Dba_printer.EICAscii.pp_bl_term let rec pp ppf = function | Asg (d, s) -> Format.fprintf ppf "@[<h>%a <-- %a@]" pp_e d pp_e s | Jcc (cc, va) -> Format.fprintf ppf "@[<h>jcc %@%a (%a)@]" Virtual_address.pp va pp_e cc | Jmp (E e, _) -> Format.fprintf ppf "@[<h>ej %a@]" pp_e e | Jmp (C va, _) -> Format.fprintf ppf "@[<h>j %@%a@]" Virtual_address.pp va | Jmp (L l, _) -> Format.fprintf ppf "@[<h>lj :%s:@]" l | Lab (l, i) -> Format.fprintf ppf "@[<h>:%s: %a@]" l pp i | Nop -> Format.pp_print_string ppf "nop" module Block = struct type t = { sealed : bool; insts : inst list } let last_label = "last" let empty = { insts = []; sealed = false } let is_empty t = t.insts = [] (* Actually, we can never have a sealed block without DBA instructions *) (* Works only on open blocks I chose +++ because it is as long as "ini" thus has a prettier alignment default *) let ( +++ ) b inst = assert (not b.sealed); { b with insts = inst :: b.insts } let ini inst = empty +++ inst let ( !! ) b = { insts = List.rev b.insts; sealed = true } let seal a b = let last = lab last_label (vajmp a) in !!(b +++ last) let is_sealed b = b.sealed let _pp ppf b = let insts = if b.sealed then b.insts else List.rev b.insts in let open Format in pp_open_vbox ppf 0; List.iter (fun i -> pp ppf i; pp_print_cut ppf ()) insts; pp_close_box ppf () let add_opt opt l = match opt with None -> l | Some x -> x :: l (* takes Pre_dba block and returns Dhunk.t *) let to_dba b = (* check that block is sealed *) assert (is_sealed b); (* get label -> id *) let _, lbl_id = List.fold_left (fun (id, map) instr -> (* invariant: no Label (Label e)) *) match instr with | Lab (lbl, _) -> (id + 1, StrMap.add lbl id map) | Asg _ | Jcc _ | Jmp _ | Nop -> (id + 1, map)) (0, StrMap.empty) b.insts in (* check that block contains more than Nop *) assert (b.insts <> [ Nop ]); (* pre_dba -> dba *) let _, instrs = List.fold_left (fun (id, l) instr -> match instr with | Nop -> (id, l) | Jmp _ -> (id + 1, add_opt (to_dba_instr instr lbl_id) l) | Asg _ | Jcc _ | Lab _ -> (id + 1, add_opt (to_dba_instr ~id instr lbl_id) l)) (0, []) b.insts in List.rev instrs |> Dhunk.of_list end end module Inst = struct type t = { mnemonic : string; opcode : Bitvector.t; dba : D.Block.t } let _empty = { mnemonic = ""; opcode = Bitvector.zero; dba = D.Block.empty } let _is_empty inst = Bitvector.equal inst.opcode Bitvector.zero && String.length inst.mnemonic = 0 && D.Block.is_empty inst.dba let _set_opcode t opcode = { t with opcode } let _set_dba t dba = { t with dba } let create ~dba ~opcode ~mnemonic = { dba; opcode; mnemonic } end type _config = { mode : Riscv_arch.Mode.t } (* Functorize the interface to set the mode in different decoders *) module Bitset = struct let restrict ~lo ~hi bits = let open Interval in Bv.extract bits { lo; hi } let eight = Bitvector.of_int ~size:mode_size 8 (* RVC registers are actually offsets from x8. See p.71 of User-Level ISA V2.2 *) let reg3 ~lo ~hi bits = assert (hi - lo + 1 = 3); let bvreg = restrict ~lo ~hi bits in let bv32 = Bv.extend bvreg mode_size in Bv.add bv32 eight end (** Bitvector utils *) let cut bv n = Bv.extract bv { lo = n; hi = n } let signed_int bv = Bv.signed_of bv |> Z.to_int let reg_num bv = Rar.of_int_exn @@ Z.to_int @@ Bitvector.value_of bv let reg_bv bv = Rar.expr (reg_num bv) let reg_name bv = Rar.name (reg_num bv) let op_imm mnemonic ~src ~dst ~imm = Printf.sprintf "%s %s,%s,%s" mnemonic (reg_name dst) (reg_name src) (Z.to_string (Bv.signed_of imm)) let op3_str ~name ~dst ~src1 ~src2 = Printf.sprintf "%s %s,%s,%s" name (reg_name dst) (reg_name src1) (reg_name src2) (** Amounts of bits used to represent a shift Since are smaller then 32 (or 64 bits) they fit on 5 or 6 bits *) let shift_size force_32 = if force_32 || Riscv_arch.Mode.is_m32 mode then 4 else if Riscv_arch.Mode.is_m64 mode then 5 else assert false module Lift = struct open D let is_x0 = let z = Rar.expr Rar.zero in ( = ) z let is_ra bv = Z.to_int (Bv.value_of bv) = Rar.num Rar.ra open Block let nop st = Block.empty |> seal (D_status.next st) let loadd t = assert_mode_is_64 "loadd"; De.load (Size.Byte.create 8) Machine.LittleEndian t let loadw = De.load (Size.Byte.create 4) Machine.LittleEndian (* is h/b defined differenlty when in 64 mode ? (ie., 32/16 bits) *) let loadh = De.load (Size.Byte.create 2) Machine.LittleEndian let loadb = De.load (Size.Byte.create 1) Machine.LittleEndian let load name load_f st ~dst ~src ~offset = let dba = ini (reg_bv dst <-- load_f (De.add (reg_bv src) (mk_imm offset))) |> seal (D_status.next st) in let mnemonic = Printf.sprintf "%s %s,%s(%s)" name (reg_name dst) (Z.to_string (Bv.signed_of offset)) (reg_name src) in (mnemonic, dba) let ld = load "ld" loadd let lw = load "lw" (fun e -> sext (loadw e)) let lwu = load "lwu" (fun e -> De.uext mode_size (loadw e)) let lh = load "lh" (fun e -> sext (loadh e)) let lhu = load "lhu" (fun e -> De.uext mode_size (loadh e)) let lb = load "lb" (fun e -> sext (loadb e)) let lbu = load "lbu" (fun e -> De.uext mode_size (loadb e)) let store name store_f restrict st ~offset ~base ~src = let dba = ini (store_f (De.add (reg_bv base) (mk_imm offset)) <-- restrict (reg_bv src)) |> seal (D_status.next st) in let mnemonic = (* The order src,offset(dst) is the one adopted by objdump *) Printf.sprintf "%s %s,%s(%s)" name (reg_name src) (Z.to_string (Bv.signed_of offset)) (reg_name base) in (mnemonic, dba) (** Store instructions (8 bit, 16 bit, 32 bit, 64 bit) *) let sb = store "sb" loadb (De.restrict 0 7) let sh = store "sh" loadh (De.restrict 0 15) let sw = store "sw" loadw (De.restrict 0 31) let sd = store "sd" loadd (De.restrict 0 63) let jmp_offset st offset = let offset = Z.to_int (Bitvector.signed_of offset) in Virtual_address.add_int offset (D_status.addr st) let branch name cmp st ~src1 ~src2 ~offset = let jump_addr = jmp_offset st offset in let dba = seal (D_status.next st) (ini @@ Jcc (cmp (reg_bv src1) (reg_bv src2), jump_addr)) in let mnemonic = (* If the second source register is zero then print special 'z' form of operator. *) if Bv.is_zeros src2 then Format.asprintf "%sz %s,%a" name (reg_name src1) Virtual_address.pp jump_addr else Format.asprintf "%s %s,%s,%a" name (reg_name src1) (reg_name src2) Virtual_address.pp jump_addr in (mnemonic, dba) let bne = branch "bne" De.diff let beq = branch "beq" De.equal let blt = branch "blt" De.slt let bltu = branch "bltu" De.ult let bge = branch "bge" De.sge let bgeu = branch "bgeu" De.uge let slti st ~dst ~src ~imm = let dba = ini (reg_bv dst <-- De.ite (De.slt (reg_bv src) (mk_imm imm)) (De.ones mode_size) (De.zeros mode_size)) |> seal (D_status.next st) in let mnemonic = op_imm "slti" ~dst ~src ~imm in (mnemonic, dba) let sltiu st ~dst ~src ~imm = let dba = ini (reg_bv dst <-- De.ite (De.ult (reg_bv src) (mk_imm imm)) (* immediate extension is signed or unsigned ? *) (De.ones mode_size) (De.zeros mode_size)) |> seal (D_status.next st) in let mnemonic = op_imm "sltiu" ~dst ~src ~imm in (mnemonic, dba) (** add with immediate: dst = src + imm *) let addi st ~dst ~src ~imm = let dst_e = reg_bv dst in let do_seal = seal (D_status.next st) in (* nop when dst is zero *) if is_x0 dst_e then ("nop", do_seal empty) else let src_e = reg_bv src in let mnemonic = if Bv.is_zeros imm then Printf.sprintf "mv %s,%s" (reg_name dst) (reg_name src) else op_imm "addi" ~dst ~src ~imm in (mnemonic, do_seal (ini (dst_e <-- De.add src_e (mk_imm imm)))) (** add word with immediate: dst = sign_extend (src[31:0] + imm) *) let addiw st ~dst ~src ~imm = assert_mode_is_64 "addiw"; let dst_e = reg_bv dst in let do_seal = seal (D_status.next st) in (* nop when dst is zero *) if is_x0 dst_e then ("nop", do_seal empty) else let src_e = reg_bv src in let mnemonic = op_imm "addiw" ~dst ~src ~imm in ( mnemonic, do_seal (ini (dst_e <-- sext (De.add (to_32 src_e) (mk_imm ~size:32 imm)))) ) let logicali name logop st ~dst ~src ~imm = let dba = ini (reg_bv dst <-- logop (reg_bv src) (mk_imm imm)) |> seal (D_status.next st) in let mnemonic = op_imm name ~src ~dst ~imm in (mnemonic, dba) let andi = logicali "andi" De.logand let xori = logicali "xori" De.logxor let ori = logicali "ori" De.logor (** Binary operation with given name and function *) let bop name f st ~dst ~src1 ~src2 = let dba = ini (reg_bv dst <-- f (reg_bv src1) (reg_bv src2)) |> seal (D_status.next st) in let mnemonic = op3_str ~name ~dst ~src1 ~src2 in (mnemonic, dba) let add = bop "add" De.add let sub = bop "sub" De.sub let logxor = bop "xor" De.logxor let logor = bop "or" De.logor let logand = bop "and" De.logand (** Binary operation on word in 64 bit mode *) let bop_w name f st ~dst ~src1 ~src2 = assert_mode_is_64 name; let dba = ini (reg_bv dst <-- sext (f (to_32 (reg_bv src1)) (to_32 (reg_bv src2)))) |> seal (D_status.next st) in let mnemonic = op3_str ~name ~dst ~src1 ~src2 in (mnemonic, dba) let addw = bop_w "addw" De.add let subw = bop_w "subw" De.sub let _mul name restrict ext1 ext2 st ~dst ~src1 ~src2 = let dba = ini (reg_bv dst <-- restrict (De.mul (ext1 (reg_bv src1)) (ext2 (reg_bv src2)))) |> seal (D_status.next st) in let mnemonic = op3_str ~name ~dst ~src1 ~src2 in (mnemonic, dba) let rmul_lo = De.restrict 0 (mode_size - 1) let rmul_hi = De.restrict mode_size ((2 * mode_size) - 1) let sextmul = De.sext @@ (2 * mode_size) let uextmul = De.uext @@ (2 * mode_size) let mul = _mul "mul" rmul_lo sextmul sextmul (* let mulu = _mul "mulu" rmul_lo uextmul uextmul ;; * let mulsu = _mul "mulsu" rmul_lo sextmul uextmul ;; *) let mulh = _mul "mulh" rmul_hi sextmul sextmul let mulhu = _mul "mulhu" rmul_hi uextmul uextmul let mulhsu = _mul "mulhsu" rmul_hi sextmul uextmul let mulw st ~dst ~src1 ~src2 = assert_mode_is_64 "mulw"; let dba = ini (reg_bv dst <-- sext (De.mul (to_32 (reg_bv src1)) (to_32 (reg_bv src2)))) |> seal (D_status.next st) in let mnemonic = op3_str ~name:"mulw" ~dst ~src1 ~src2 in (mnemonic, dba) let eq_zero e = De.equal e (De.zeros (De.size_of e)) let minus_one size = De.constant (Bv.of_int ~size (-1)) let min_int size = De.constant (Bv.min_sbv size) let eq_minus_one e = De.equal e (minus_one (De.size_of e)) let eq_min_int e = De.equal e (min_int (De.size_of e)) let _div ?on_overflow ~on_div_by_zero name f st ~dst ~src1 ~src2 = let dba = let divisor = reg_bv src2 in let dividend = reg_bv src1 in let e = De.ite (eq_zero divisor) on_div_by_zero (match on_overflow with | Some of_e -> De.ite (De.logand (eq_minus_one divisor) (eq_min_int dividend)) of_e (f dividend divisor) | None -> f dividend divisor) in ini (reg_bv dst <-- e) |> seal (D_status.next st) in let mnemonic = op3_str ~name ~dst ~src1 ~src2 in (mnemonic, dba) let div = _div ~on_overflow:(min_int mode_size) ~on_div_by_zero:(minus_one mode_size) "div" De.sdiv let divu = _div ~on_div_by_zero:(De.constant (Bv.max_ubv mode_size)) "divu" De.udiv let rem st ~dst ~src1 ~src2 = _div ~on_div_by_zero:(reg_bv src1) ~on_overflow:(De.zeros mode_size) "rem" De.srem st ~dst ~src1 ~src2 let remu st ~dst ~src1 ~src2 = _div ~on_div_by_zero:(reg_bv src1) "remu" De.urem st ~dst ~src1 ~src2 (** 32 bit division in 64 bit mode - same semantics as 32 bit division with a final sign extension *) let _divw ?on_overflow ~on_div_by_zero name f st ~dst ~src1 ~src2 = assert_mode_is_64 name; let dba = let divisor = to_32 (reg_bv src2) in let dividend = to_32 (reg_bv src1) in let res = De.sext mode_size (f dividend divisor) in let e = De.ite (eq_zero divisor) on_div_by_zero (match on_overflow with | Some of_e -> De.ite (De.logand (eq_minus_one divisor) (eq_min_int dividend)) of_e res | None -> res) in ini (reg_bv dst <-- sext e) |> seal (D_status.next st) in let mnemonic = op3_str ~name ~dst ~src1 ~src2 in (mnemonic, dba) let divw = _divw ~on_overflow:(De.constant (Bv.fill ~lo:31 mode_size)) ~on_div_by_zero:(minus_one mode_size) "divw" De.sdiv let divuw = _divw ~on_div_by_zero:(De.constant (Bv.max_ubv mode_size)) "divuw" De.udiv let remw st ~dst ~src1 ~src2 = _divw ~on_div_by_zero:(reg_bv src1) ~on_overflow:(De.zeros mode_size) "remw" De.srem st ~dst ~src1 ~src2 let remuw st ~dst ~src1 ~src2 = _divw ~on_div_by_zero:(reg_bv src1) "remuw" De.urem st ~dst ~src1 ~src2 let slt_f name cmp st ~dst ~src1 ~src2 = let dba = ini (reg_bv dst <-- De.ite (cmp (reg_bv src1) (reg_bv src2)) (De.ones mode_size) (De.zeros mode_size)) |> seal (D_status.next st) in let mnemonic = op3_str ~name ~dst ~src1 ~src2 in (mnemonic, dba) let slt = slt_f "slt" De.slt let sltu = slt_f "ult" De.ult let shift_f name shop st ~dst ~src1 ~src2 = let shift_size = shift_size false in let dba = ini (reg_bv dst <-- shop (reg_bv src1) (* For some reason DBA allows negative shifts... *) (De.uext mode_size (De.restrict 0 shift_size (reg_bv src2)))) |> seal (D_status.next st) in let mnemonic = op3_str ~name ~dst ~src1 ~src2 in (mnemonic, dba) let sll = shift_f "sll" De.shift_left let srl = shift_f "srl" De.shift_right let sra = shift_f "sra" De.shift_right_signed let shift_f_w name shop st ~dst ~src1 ~src2 = assert_mode_is_64 name; let shift_size = shift_size true in let dba = ini (reg_bv dst <-- sext (shop (to_32 (reg_bv src1)) (De.uext 32 (De.restrict 0 shift_size (reg_bv src2))))) |> seal (D_status.next st) in let mnemonic = op3_str ~name ~dst ~src1 ~src2 in (mnemonic, dba) let sllw = shift_f_w "sllw" De.shift_left let srlw = shift_f_w "srlw" De.shift_right let sraw = shift_f_w "sraw" De.shift_right_signed let mov st ~dst ~src = if Bv.equal dst src then ("nop", seal (D_status.next st) empty) else ( Printf.sprintf "mv %s,%s" (reg_name dst) (reg_name src), ini (reg_bv dst <-- reg_bv src) |> seal (D_status.next st) ) let jal ~call st ~dst ~offset = let jmp_addr = let offset = Z.to_int (Bitvector.signed_of offset) in Virtual_address.add_int offset (D_status.addr st) in let next_addr = D_status.next st in let tag = if call then Dba.Call (Dba_types.Caddress.of_virtual_address next_addr) else Default in let dba = !!(ini (reg_bv dst <-- aoff next_addr) +++ vajmp ~tag jmp_addr) in let mnemonic = Format.asprintf "jal %a" Virtual_address.pp jmp_addr in (mnemonic, dba) (** instr_size is the size in bytes, so 2 for compressed and 4 for normal *) let jalr ~call st ~instr_size ~dst ~src ~offset = let jump_addr = let _offset = Z.to_int (Bitvector.signed_of offset) in Virtual_address.add_int instr_size (D_status.addr st) in let r = reg_bv dst in (* We need a temporary value for when dst = src *) let temp = De.temporary ~size:mode_size "tmp_jalr" in let base = ini (temp <-- De.add (reg_bv src) (mk_imm offset)) in let sr = if is_x0 r then base else let next = aoff jump_addr in base +++ (r <-- next) in let tag : Dba.tag = if call then Call (Dba_types.Caddress.of_virtual_address jump_addr) else if is_x0 r then Return else Default in let dba = !!(sr +++ ejmp ~tag temp) in let mnemonic = if is_x0 r then "ret" else Format.asprintf "jalr %s,%s,%a" (reg_name dst) (reg_name src) Virtual_address.pp jump_addr in (mnemonic, dba) let jr st r = let _, dba = jalr ~call:false st ~instr_size:4 ~dst:Bitvector.zero ~src:r ~offset:Bitvector.zero in let mnemonic = if is_ra r then "ret" else Printf.sprintf "jr %s" (reg_name r) in (mnemonic, dba) let auipc st ~dst ~offset = let dba = let offset = Bv.extend_signed (Bv.append offset (Bv.zeros 12)) mode_size in ini (reg_bv dst <-- aoff (D_status.addr st) ~offset) |> seal (D_status.next st) in let mnemonic = Printf.sprintf "auipc %s,%s" (reg_name dst) (Bv.to_hexstring offset) in (mnemonic, dba) let lui st ~dst ~offset = let dba = ini (reg_bv dst <-- De.sext mode_size (mk_imm ~size:32 (Bv.append offset (Bv.zeros 12)))) |> seal (D_status.next st) in let mnemonic = Printf.sprintf "lui %s,%s" (reg_name dst) (Bitvector.to_hexstring offset) in (mnemonic, dba) let shift_immediate shop st ~dst ~src ~shamt = ini (reg_bv dst <-- shop (reg_bv src) (mk_cst Bv.extend shamt)) |> seal (D_status.next st) let slli = shift_immediate De.shift_left let srli = shift_immediate De.shift_right let srai = shift_immediate De.shift_right_signed let shift_immediate_word shop st ~dst ~src ~shamt = assert_mode_is_64 "shift word (slliw/srliw/sraiw)"; ini (reg_bv dst <-- sext (shop (to_32 (reg_bv src)) (mk_cst ~size:32 Bv.extend shamt))) |> seal (D_status.next st) let slliw = shift_immediate_word De.shift_left let srliw = shift_immediate_word De.shift_right let sraiw = shift_immediate_word De.shift_right_signed module C = struct let slli st ~dst ~shamt = slli st ~dst ~src:dst ~shamt let srli st ~dst ~shamt = srli st ~dst ~src:dst ~shamt let srai st ~dst ~shamt = srai st ~dst ~src:dst ~shamt let jstitch11 offset = let open Basic_types in let bvimm = Bv.concat [ cut offset 10; (* bit 11 *) cut offset 6; (* bit 10 *) Bv.extract offset { lo = 7; hi = 8 }; cut offset 4; (* bit 7 *) cut offset 5; (* bit 6 *) cut offset 0; (* bit 5 *) cut offset 9; Bv.extract offset { lo = 1; hi = 3 }; ] in L.debug "C.j offset %a (%d)" Bv.pp bvimm (signed_int bvimm); Bv.extend_signed bvimm mode_size let real_offset offset = jstitch11 offset |> scale_by 2 let jmp rdst st ~offset = let dst = Rar.(bvnum rdst) in jal ~call:false st ~dst ~offset:(real_offset offset) let j st ~offset = let _, dba = jmp Rar.zero st ~offset in let jmp_addr = jmp_offset st (real_offset offset) in (Format.asprintf "j %a" Virtual_address.pp jmp_addr, dba) let jal = jmp (Rar.of_int_exn 1) let jalr st ~src = let dst = Rar.(bvnum ra) (* always ra *) in let offset = Bv.zero in let _, dba = jalr ~call:true st ~instr_size:2 ~dst ~src ~offset in (Printf.sprintf "jalr %s" (reg_name src), dba) let swsp st ~src ~imm6 = let bvoff = (* imm6 is offset[5:2|7:6] *) Bv.concat [ Bv.extract imm6 { lo = 0; hi = 1 }; Bv.extract imm6 { lo = 2; hi = 5 }; ] in let offset = scale_by 4 (Bv.extend bvoff mode_size) in sw st ~src ~base:Rar.(bvnum sp) ~offset let sdsp st ~src ~imm6 = assert_mode_is_64 "C.sdsp"; let bvoff = (* imm6 is offset[5:3|8:6] *) Bv.concat [ Bv.extract imm6 { lo = 0; hi = 2 }; Bv.extract imm6 { lo = 3; hi = 5 }; ] in let offset = scale_by 8 (Bv.extend bvoff mode_size) in sd st ~src ~base:Rar.(bvnum sp) ~offset let sw st bits = let base = Bitset.reg3 ~lo:7 ~hi:9 bits in let src = Bitset.reg3 ~lo:2 ~hi:4 bits in let imm3 = Bitset.restrict ~lo:10 ~hi:12 bits in (* offset[5:3]*) let imm2 = Bitset.restrict ~lo:5 ~hi:6 bits in (* offset[2|6] *) let bvoff = Bv.concat [ cut imm2 0; imm3; cut imm2 1 ] in let offset = scale_by 4 (Bv.extend bvoff mode_size) in sw st ~base ~src ~offset let sd st bits = assert_mode_is_64 "C.sd"; let base = Bitset.reg3 ~lo:7 ~hi:9 bits in let src = Bitset.reg3 ~lo:2 ~hi:4 bits in let imm3 = Bitset.restrict ~lo:10 ~hi:12 bits in (* offset[5:3]*) let imm2 = Bitset.restrict ~lo:5 ~hi:6 bits in (* offset[7:6]*) let bvoff = Bv.concat [ imm2; imm3 ] in let offset = scale_by 8 (Bv.extend bvoff mode_size) in sd st ~base ~src ~offset let lwsp st ~dst ~off1 ~off5 = (* offset is split in two fields: - off1 is offset[5] - off2 is offset[4:2|7:6] *) let bvoff = Bv.concat [ Bv.extract off5 { lo = 0; hi = 1 }; off1; Bv.extract off5 { lo = 2; hi = 4 }; ] in let offset = scale_by 4 (Bv.extend bvoff mode_size) in lw st ~dst ~offset ~src:Rar.(bvnum sp) let ldsp st ~dst ~off1 ~off5 = assert_mode_is_64 "C.ldsp"; (* offset is split in two fields: - off1 is offset[5] - off2 is offset[4:3|8:6] *) let bvoff = Bv.concat [ Bv.extract off5 { lo = 0; hi = 2 }; off1; Bv.extract off5 { lo = 3; hi = 4 }; ] in let offset = scale_by 8 (Bv.extend bvoff mode_size) in ld st ~dst ~offset ~src:Rar.(bvnum sp) let lw st bits = let dst = Bitset.reg3 ~lo:2 ~hi:4 bits in let base = Bitset.reg3 ~lo:7 ~hi:9 bits in let imm2 = Bitset.restrict ~lo:5 ~hi:6 bits in (* offset[2|6] *) let imm3 = Bitset.restrict ~lo:10 ~hi:12 bits in (* offset[5:3] *) let bvoff = Bv.concat [ cut imm2 0; imm3; cut imm2 1 ] in let offset = scale_by 4 (Bv.extend_signed bvoff mode_size) in lw st ~dst ~offset ~src:base let ld st bits = assert_mode_is_64 "C.ld"; let dst = Bitset.reg3 ~lo:2 ~hi:4 bits in let base = Bitset.reg3 ~lo:7 ~hi:9 bits in let imm2 = Bitset.restrict ~lo:5 ~hi:6 bits in (* offset[7:6] *) let imm3 = Bitset.restrict ~lo:10 ~hi:12 bits in (* offset[5:3] *) let bvoff = Bv.concat [ imm2; imm3 ] in let offset = scale_by 8 (Bv.extend_signed bvoff mode_size) in ld st ~dst ~offset ~src:base let li st ~dst ~imm5 ~imm1 = let src = Bitvector.zero (* x0 *) in let imm = Bv.concat [ imm1; imm5 ] in let _, dba = addi st ~src ~dst ~imm in ( Printf.sprintf "li %s,%s" (reg_name dst) (Z.to_string (Bv.signed_of imm)), dba ) let addi16sp st ~imm5 ~imm1 = L.debug "addi16sp"; let bv5 = imm5 and bv1 = imm1 in let nzimm = Bitvector.concat [ bv1; Bv.extract bv5 { lo = 1; hi = 2 }; cut bv5 3; cut bv5 0; cut bv5 4; ] in assert (not @@ Bitvector.is_zeros nzimm); let imm = scale_by 16 (Bv.extend_signed nzimm mode_size) in let dst = Rar.(bvnum sp) in addi st ~src:dst ~dst ~imm let addi4spn st bits = L.debug "addi4spn"; let bv8 = Bitset.restrict ~lo:5 ~hi:12 bits in (* bv8 is nzuimm[5:4|9:6|2|3] *) let bvoff = Bv.concat [ Bv.extract bv8 { lo = 2; hi = 5 }; Bv.extract bv8 { lo = 6; hi = 7 }; cut bv8 0; cut bv8 1; Bv.zeros 2; ] in let imm = Bv.extend bvoff 12 in let dst = Bitset.reg3 ~lo:2 ~hi:4 bits in L.debug "rd is x%d" (Bv.to_int dst); addi st ~dst ~imm ~src:Rar.(bvnum sp) let addi st ~dst ~imm5 ~imm1 = let imm = Bv.append imm1 imm5 in addi st ~src:dst ~dst ~imm let addiw st ~dst ~imm5 ~imm1 = let imm = Bv.append imm1 imm5 in addiw st ~src:dst ~dst ~imm let andi st opcode = let imm1 = cut opcode 12 in (* imm[5] *) let imm5 = Bv.extract opcode { lo = 2; hi = 6 } in let dst = Bitset.reg3 ~lo:7 ~hi:9 opcode in let imm = Bv.append imm1 imm5 in andi st ~dst ~src:dst ~imm let lift_to_uncompressed bop st ~dst ~src = bop st ~dst ~src1:dst ~src2:src let add = lift_to_uncompressed add let sub = lift_to_uncompressed sub let addw = lift_to_uncompressed addw let subw = lift_to_uncompressed subw let logor = lift_to_uncompressed logor let logxor = lift_to_uncompressed logxor let logand = lift_to_uncompressed logand let lui st ~dst ~imm5 ~imm1 = assert ( let v = Bitvector.value_of dst |> Z.to_int in v <> 0 && v <> 2); let offset = Bitvector.append imm1 imm5 in lui st ~dst ~offset let bz name branch_f st ~src ~imm3 ~imm5 = let offset = let open Basic_types in Bv.concat [ cut imm3 2; Bv.extract imm5 { lo = 3; hi = 4 }; cut imm5 0; Bv.extract imm3 { lo = 0; hi = 1 }; Bv.extract imm5 { lo = 1; hi = 2 }; Bv.zero; ] in let _, dba = branch_f st ~src1:src ~src2:Rar.(bvnum zero) ~offset in ( Format.asprintf "%s %s,%a" name (reg_name src) Virtual_address.pp (jmp_offset st offset), dba ) let beqz = bz "beqz" beq let bnez = bz "bnez" bne end end type inst = Unhandled of string | Unknown of string | Inst of Inst.t let unh s = Unhandled s let unk s = Unknown s let ins t = Inst t [@@@warning "-60"] module I = struct (* Basic instruction type for RISC-V are described page 23 of manual *) module Rtype = struct type t = { funct7 : Bitvector.t; rs2 : Bitvector.t; rs1 : Bitvector.t; funct3 : Bitvector.t; rd : Bitvector.t; opcode : Bitvector.t; } let slice bits = let open Bitset in let opcode = restrict ~lo:0 ~hi:6 bits and rd = restrict ~lo:7 ~hi:11 bits and funct3 = restrict ~lo:12 ~hi:14 bits and rs1 = restrict ~lo:15 ~hi:19 bits and rs2 = restrict ~lo:20 ~hi:24 bits and funct7 = restrict ~lo:25 ~hi:31 bits in { funct7; rd; funct3; opcode; rs1; rs2 } let apply lift_f st opcode = let s = slice opcode in let dst = s.rd and src1 = s.rs1 and src2 = s.rs2 in let mnemonic, dba = lift_f st ~dst ~src1 ~src2 in Inst.create ~dba ~mnemonic ~opcode let sub = apply Lift.sub let add = apply Lift.add let logxor = apply Lift.logxor let logor = apply Lift.logor let logand = apply Lift.logand let addw = apply Lift.addw let subw = apply Lift.subw let slt = apply Lift.slt let sltu = apply Lift.sltu let sll = apply Lift.sll let srl = apply Lift.srl let sra = apply Lift.sra let sllw = apply Lift.sllw let srlw = apply Lift.srlw let sraw = apply Lift.sraw end module Itype = struct type t = { opcode : Bv.t; rd : Bv.t; funct3 : Bv.t; rs1 : Bv.t; imm12 : Bv.t; } let restrict bits = let open Bitset in let opcode = restrict ~lo:0 ~hi:6 bits and rd = restrict ~lo:7 ~hi:11 bits and funct3 = restrict ~lo:12 ~hi:14 bits and rs1 = restrict ~lo:15 ~hi:19 bits and imm12 = restrict ~lo:20 ~hi:31 bits in { rd; opcode; funct3; rs1; imm12 } let lift_aux lifter st opcode = let s = restrict opcode in let dst = s.rd in let src = s.rs1 in let imm = s.imm12 in let mnemonic, dba = lifter st ~dst ~src ~imm in Inst.create ~dba ~opcode ~mnemonic let addi = lift_aux Lift.addi let addiw = lift_aux Lift.addiw let slti = lift_aux Lift.slti let sltiu = lift_aux Lift.sltiu let andi = lift_aux Lift.andi let ori = lift_aux Lift.ori let xori = lift_aux Lift.xori let apply_off lift_f st opcode = let s = restrict opcode in let dst = s.rd and src = s.rs1 and offset = s.imm12 in lift_f st ~dst ~src ~offset let ld = apply_off Lift.ld let lw = apply_off Lift.lw let lwu = apply_off Lift.lwu let lh = apply_off Lift.lh let lb = apply_off Lift.lb let lhu = apply_off Lift.lhu let lbu = apply_off Lift.lbu let jalr = apply_off (Lift.jalr ~call:true ~instr_size:4) (* Shift with immediates *) let apply_shift name lift_f st ~shamt ~dst ~src ~opcode = let dba = lift_f st ~dst ~src ~shamt in let mnemonic = Printf.sprintf "%s %s,%s,%s" name (reg_name dst) (reg_name src) (Z.to_string (Bitvector.value_of shamt)) in Inst.create ~mnemonic ~dba ~opcode (** Spilts the 12 bit immediate into: - shamt (5-6 bits) imm[4:0] or imm[5:0] depending on 32 or 64 bit mode - imm[10] - used to determine right shift operation asserts all other bits are 0*) let get_shamt force_32 imm = let shamt_size = shift_size force_32 in (* Invalid shift operation if imm[11,9-shamt_size+1] not zero*) assert (Bv.is_zero (Bitset.restrict ~lo:11 ~hi:11 imm)); assert (Bv.is_zeros (Bitset.restrict ~lo:(shamt_size + 1) ~hi:9 imm)); ( Bitset.restrict ~lo:0 ~hi:shamt_size imm, Bitset.restrict ~lo:10 ~hi:10 imm ) (** shift left logical with immediate, is_word is for 64bit word shifts *) let slli is_word st bits = let s = restrict bits in let shamt, imm10 = get_shamt is_word s.imm12 in assert (Bv.is_zero imm10); let name, lift_f = if is_word then ("slliw", Lift.slliw) else ("slli", Lift.slli) in apply_shift name lift_f st ~shamt ~dst:s.rd ~src:s.rs1 ~opcode:bits (** shift right with immediate, logical or arithmetic *) let srxi is_word st opcode = let s = restrict opcode in let shamt, imm10 = get_shamt is_word s.imm12 in let name, lift_f = match (Bitvector.is_zero imm10, is_word) with | true, false -> ("srli", Lift.srli) | false, false -> ("srai", Lift.srai) | true, true -> ("srliw", Lift.srliw) | false, true -> ("sraiw", Lift.sraiw) in apply_shift name lift_f st ~shamt ~opcode ~dst:s.rd ~src:s.rs1 end module Stype = struct type t = { opcode : Bv.t; imm5 : Bv.t; funct3 : Bv.t; rs1 : Bv.t; rs2 : Bv.t; imm7 : Bv.t; } let restrict bits = let open Bitset in let opcode = restrict ~lo:0 ~hi:6 bits and imm5 = restrict ~lo:7 ~hi:11 bits and funct3 = restrict ~lo:12 ~hi:14 bits and rs1 = restrict ~lo:15 ~hi:19 bits and rs2 = restrict ~lo:20 ~hi:24 bits and imm7 = restrict ~lo:25 ~hi:31 bits in { imm7; imm5; funct3; opcode; rs1; rs2 } let branch lift st opcode = let s = restrict opcode in let bv7 = s.imm7 and bv5 = s.imm5 in let offset = let open Basic_types in Bv.concat [ cut bv7 6; cut bv5 0; Bv.extract bv7 { lo = 0; hi = 5 }; Bv.extract bv5 { lo = 1; hi = 4 }; Bv.zero; (* is that what the sentence "in multiple of 2" means p.17 ? *) ] in let src1 = s.rs1 and src2 = s.rs2 in let mnemonic, dba = lift st ~src1 ~src2 ~offset in Inst.create ~dba ~mnemonic ~opcode let beq = branch Lift.beq let bne = branch Lift.bne let blt = branch Lift.blt let bge = branch Lift.bge let bltu = branch Lift.bltu let bgeu = branch Lift.bgeu let store store_f st opcode = let s = restrict opcode in let offset = Bv.append s.imm7 s.imm5 in let base = s.rs1 and src = s.rs2 in store_f st ~offset ~base ~src (** Store instructions (8 bit, 16 bit, 32 bit, 64 bit) *) let sb = store Lift.sb let sh = store Lift.sh let sw = store Lift.sw let sd = store Lift.sd end module Utype = struct type t = { opcode : Bv.t; rd : Bv.t; imm20 : Bv.t } let restrict bits = let open Bitset in let opcode = restrict ~lo:0 ~hi:6 bits and rd = restrict ~lo:7 ~hi:11 bits and imm20 = restrict ~lo:12 ~hi:31 bits in { opcode; rd; imm20 } let apply lift_f st opcode = let s = restrict opcode in (* Is offset a good name here since mnemonics add unsigned immediates ? *) let dst = s.rd and offset = s.imm20 in lift_f st ~dst ~offset let lui = apply Lift.lui let auipc = apply Lift.auipc end module Jtype = struct type t = { opcode : Bv.t; rd : Bv.t; imm20 : Bv.t } let restrict bits = let open Bitset in let opcode = restrict ~lo:0 ~hi:6 bits and rd = restrict ~lo:7 ~hi:11 bits and imm20 = restrict ~lo:12 ~hi:31 bits in { rd; imm20; opcode } let jal st bits = let s = restrict bits in let bvimm = s.imm20 in let bvoff = let open Basic_types in Bv.concat [ cut bvimm 19; Bv.extract bvimm { lo = 0; hi = 7 }; cut bvimm 8; Bv.extract bvimm { lo = 9; hi = 18 }; ] in let offset = Bv.extend_signed bvoff mode_size |> scale_by 2 in Lift.jal st ~dst:s.rd ~offset end (* RV32M/RV64M Standard Extension *) module M = struct let mul = Rtype.apply Lift.mul let mulh = Rtype.apply Lift.mulh let mulhu = Rtype.apply Lift.mulhu let mulhsu = Rtype.apply Lift.mulhsu let mulw = Rtype.apply Lift.mulw let div = Rtype.apply Lift.div let divu = Rtype.apply Lift.divu let rem = Rtype.apply Lift.rem let remu = Rtype.apply Lift.remu let divw = Rtype.apply Lift.divw let divuw = Rtype.apply Lift.divuw let remw = Rtype.apply Lift.remw let remuw = Rtype.apply Lift.remuw end (* Compressed instruction format *) module C = struct let shift name rd shift_f st opcode = let dst = rd opcode in let shamt5 = Bitset.restrict ~lo:2 ~hi:6 opcode in let shamt1 = Bitset.restrict ~lo:12 ~hi:12 opcode in if Riscv_arch.Mode.is_m32 mode then assert (Bv.is_zero shamt1); let shamt = Bv.append shamt1 shamt5 in assert (not (Bv.is_zeros shamt)); let dba = shift_f st ~dst ~shamt in let mnemonic = Printf.sprintf "%s %s,%s,%s" name (reg_name dst) (reg_name dst) (Z.to_string (Bv.value_of shamt)) in Inst.create ~dba ~mnemonic ~opcode let srli = shift "srli" (Bitset.reg3 ~lo:7 ~hi:9) Lift.C.srli let srai = shift "srai" (Bitset.reg3 ~lo:7 ~hi:9) Lift.C.srai let slli = shift "slli" (Bitset.restrict ~lo:7 ~hi:11) Lift.C.slli let c0 st opcode = let funct3 = uint @@ Bitset.restrict ~lo:13 ~hi:15 opcode in match funct3 with | 0 -> let rd = Bitset.reg3 ~lo:2 ~hi:4 opcode in let nzuimm = Bitset.restrict ~lo:5 ~hi:12 opcode in if Bv.is_zeros rd && Bv.is_zeros nzuimm then unh "Illegal instruction" else let mnemonic, dba = Lift.C.addi4spn st opcode in ins @@ Inst.create ~mnemonic ~dba ~opcode | 1 -> unh "C.fld" | 2 -> let mnemonic, dba = Lift.C.lw st opcode in ins @@ Inst.create ~mnemonic ~dba ~opcode | 3 -> if Riscv_arch.Mode.is_m32 mode then unh "C.flw" else let mnemonic, dba = Lift.C.ld st opcode in ins @@ Inst.create ~mnemonic ~dba ~opcode | 4 -> unh "C.reserved" | 5 -> if Riscv_arch.Mode.is_m128 mode then unh "C.sq" else unh "C.fsd" | 6 -> let mnemonic, dba = Lift.C.sw st opcode in ins @@ Inst.create ~opcode ~mnemonic ~dba | 7 -> if Riscv_arch.Mode.is_m32 mode then unh "C.fsw" else let mnemonic, dba = Lift.C.sd st opcode in ins @@ Inst.create ~opcode ~mnemonic ~dba | _ -> assert false (* no 3 opcode value should reach here *) let c1_arith st opcode = (* opcode is 1 and funct3 is 4 *) let funct2 = uint @@ Bitset.restrict ~lo:10 ~hi:11 opcode in match funct2 with | 0 -> ins @@ srli st opcode | 1 -> ins @@ srai st opcode | 2 -> let mnemonic, dba = Lift.C.andi st opcode in ins @@ Inst.create ~opcode ~dba ~mnemonic | 3 -> ( let funct1 = uint @@ Bitset.restrict ~lo:12 ~hi:12 opcode in let funct2 = uint @@ Bitset.restrict ~lo:5 ~hi:6 opcode in let dst = Bitset.reg3 ~lo:7 ~hi:9 opcode in let src = Bitset.reg3 ~lo:2 ~hi:4 opcode in if funct1 = 0 then let mnemonic, dba = match funct2 with | 0 -> Lift.C.sub st ~dst ~src | 1 -> Lift.C.logxor st ~dst ~src | 2 -> Lift.C.logor st ~dst ~src | 3 -> Lift.C.logand st ~dst ~src | _ -> assert false in ins @@ Inst.create ~opcode ~dba ~mnemonic else match funct2 with | 0 -> let mnemonic, dba = Lift.C.subw st ~dst ~src in ins @@ Inst.create ~opcode ~dba ~mnemonic | 1 -> let mnemonic, dba = Lift.C.addw st ~dst ~src in ins @@ Inst.create ~opcode ~dba ~mnemonic | 2 -> unh "reserved" | 3 -> unh "reserved" | _ -> assert false) | _ -> assert false let bz bz_lift opcode = let imm5 = Bitset.restrict ~lo:2 ~hi:6 opcode in let imm3 = Bitset.restrict ~lo:10 ~hi:12 opcode in let src = Bitset.reg3 ~lo:7 ~hi:9 opcode in let mnemonic, dba = bz_lift ~src ~imm3 ~imm5 in ins @@ Inst.create ~mnemonic ~dba ~opcode let c1 st opcode = let funct3 = uint @@ Bitset.restrict ~lo:13 ~hi:15 opcode in match funct3 with | 0 -> let r = Bitset.restrict ~lo:7 ~hi:11 opcode in let nzuimm5 = Bitset.restrict ~lo:2 ~hi:6 opcode in let nzuimm1 = Bitset.restrict ~lo:12 ~hi:12 opcode in if Bv.is_zeros r && Bv.is_zeros nzuimm1 && Bv.is_zeros nzuimm5 then ins @@ Inst.create ~dba:(Lift.nop st) ~mnemonic:"nop" ~opcode else let mnemonic, dba = Lift.C.addi st ~dst:r ~imm5:nzuimm5 ~imm1:nzuimm1 in ins @@ Inst.create ~dba ~mnemonic ~opcode | 1 -> if Riscv_arch.Mode.is_m32 mode then let offset = Bitset.restrict ~lo:2 ~hi:12 opcode in let mnemonic, dba = Lift.C.jal st ~offset in ins @@ Inst.create ~mnemonic ~dba ~opcode else let dst = Bitset.restrict ~lo:7 ~hi:11 opcode in let imm5 = Bitset.restrict ~lo:2 ~hi:6 opcode in let imm1 = Bitset.restrict ~lo:12 ~hi:12 opcode in let mnemonic, dba = Lift.C.addiw st ~dst ~imm5 ~imm1 in ins @@ Inst.create ~mnemonic ~dba ~opcode | 2 -> let rd = Bitset.restrict ~lo:7 ~hi:11 opcode in let imm5 = Bitset.restrict ~lo:2 ~hi:6 opcode in let imm1 = Bitset.restrict ~lo:12 ~hi:12 opcode in let mnemonic, dba = Lift.C.li st ~dst:rd ~imm5 ~imm1 in ins @@ Inst.create ~dba ~mnemonic ~opcode | 3 -> let rd = Bitset.restrict ~lo:7 ~hi:11 opcode in let imm5 = Bitset.restrict ~lo:2 ~hi:6 opcode in let imm1 = Bitset.restrict ~lo:12 ~hi:12 opcode in assert (not @@ Bv.is_zeros rd); let mnemonic, dba = if uint rd = 2 then Lift.C.addi16sp st ~imm1 ~imm5 else Lift.C.lui st ~dst:rd ~imm1 ~imm5 in ins @@ Inst.create ~dba ~mnemonic ~opcode | 4 -> c1_arith st opcode | 5 -> let offset = Bitset.restrict ~lo:2 ~hi:12 opcode in let mnemonic, dba = Lift.C.j st ~offset in ins @@ Inst.create ~mnemonic ~dba ~opcode | 6 -> bz (Lift.C.beqz st) opcode | 7 -> bz (Lift.C.bnez st) opcode | _ -> assert false (* no 3 opcode value should reach here *) let c2 st opcode = let _opcode = 0x2 in let funct3 = Bitset.restrict ~lo:13 ~hi:15 opcode in match uint funct3 with | 0 -> ins @@ slli st opcode | 1 -> unh "C.fldsp" | 2 -> let dst = Bitset.restrict ~lo:7 ~hi:11 opcode in let off5 = Bitset.restrict ~lo:2 ~hi:6 opcode in let off1 = Bitset.restrict ~lo:12 ~hi:12 opcode in let mnemonic, dba = Lift.C.lwsp st ~dst ~off1 ~off5 in ins @@ Inst.create ~opcode ~mnemonic ~dba | 3 -> if Riscv_arch.Mode.is_m32 mode then unh "C.flwsp" else let dst = Bitset.restrict ~lo:7 ~hi:11 opcode in let off5 = Bitset.restrict ~lo:2 ~hi:6 opcode in let off1 = Bitset.restrict ~lo:12 ~hi:12 opcode in let mnemonic, dba = Lift.C.ldsp st ~dst ~off1 ~off5 in ins @@ Inst.create ~opcode ~mnemonic ~dba | 4 -> ( let funct4 = Bitset.restrict ~lo:12 ~hi:15 opcode in match uint funct4 with | 0x8 -> let rs2 = Bitset.restrict ~lo:2 ~hi:6 opcode in let rx = Bitset.restrict ~lo:7 ~hi:11 opcode in let mnemonic, dba = if Bv.is_zeros rs2 then Lift.jr st rx else Lift.mov st ~dst:rx ~src:rs2 in ins @@ Inst.create ~opcode ~mnemonic ~dba | 0x9 -> let r1 = Bitset.restrict ~lo:7 ~hi:11 opcode in let r2 = Bitset.restrict ~lo:2 ~hi:6 opcode in if Bv.is_zeros r2 then if Bv.is_zeros r1 then unh "C.ebreak" else let mnemonic, dba = Lift.C.jalr st ~src:r1 in ins @@ Inst.create ~opcode ~mnemonic ~dba else let mnemonic, dba = Lift.C.add st ~src:r2 ~dst:r1 in ins @@ Inst.create ~opcode ~mnemonic ~dba | _ -> assert false) | 5 -> unh "C.fsdsp/C.sqps" | 6 -> let imm6 = Bitset.restrict ~lo:7 ~hi:12 opcode in let src = Bitset.restrict ~lo:2 ~hi:6 opcode in let mnemonic, dba = Lift.C.swsp st ~imm6 ~src in ins @@ Inst.create ~opcode ~mnemonic ~dba | 7 -> if Riscv_arch.Mode.is_m32 mode then unh "C.fswsp" else let imm6 = Bitset.restrict ~lo:7 ~hi:12 opcode in let src = Bitset.restrict ~lo:2 ~hi:6 opcode in let mnemonic, dba = Lift.C.sdsp st ~imm6 ~src in ins @@ Inst.create ~opcode ~mnemonic ~dba | _ -> assert false end end let is_compressed bits = let open Interval in let bv = Bv.extract bits { lo = 0; hi = 1 } in let v = uint bv in v <> 3 module Uncompressed = struct (* *) let funct3 opcode = uint (Bitset.restrict ~lo:12 ~hi:14 opcode) let funct7 opcode = uint (Bitset.restrict ~lo:25 ~hi:31 opcode) (* Instructions with opcode 0x13 (0b0010011) are I type (arithmetic with immediate) *) let lift_0x13 st bits = match funct3 bits with | 0 -> ins @@ I.Itype.addi st bits | 1 -> ins @@ I.Itype.slli false st bits | 2 -> ins @@ I.Itype.slti st bits | 3 -> ins @@ I.Itype.sltiu st bits | 4 -> ins @@ I.Itype.xori st bits | 5 -> ins @@ I.Itype.srxi false st bits | 6 -> ins @@ I.Itype.ori st bits | 7 -> ins @@ I.Itype.andi st bits | _ -> assert false (* Instruction with opcode 0x1b (0b011011) are I type in RV64I 32bit addition with immediate *) let lift_0x1b st bits = match funct3 bits with | 0 -> ins @@ I.Itype.addiw st bits | 1 -> ins @@ I.Itype.slli true st bits | 5 -> ins @@ I.Itype.srxi true st bits | _ -> assert false (* Instructions with opcode 0x23 (0b0100011) are S type (memory stores M[rs1 + imm] <- rs2) *) let lift_0x23 st bv = let mnemonic, dba = match funct3 bv with | 0 -> I.Stype.sb st bv | 1 -> I.Stype.sh st bv | 2 -> I.Stype.sw st bv | 3 -> assert_mode_is_64 "sd"; I.Stype.sd st bv | _ -> assert false in ins @@ Inst.create ~opcode:bv ~mnemonic ~dba (* Instructions with opcode 0x33 (0b0110011) are R type (or M extension) register arithmetic *) let lift_0x33 st opcode = let funct7 = funct7 opcode in ins @@ match funct3 opcode with | 0 -> ( match funct7 with | 0 -> I.Rtype.add st opcode | 1 -> I.M.mul st opcode | 0x20 -> I.Rtype.sub st opcode | _ -> assert false) | 1 -> if funct7 = 0 then I.Rtype.sll st opcode else I.M.mulh st opcode | 2 -> if funct7 = 0 then I.Rtype.slt st opcode else I.M.mulhsu st opcode | 3 -> if funct7 = 0 then I.Rtype.sltu st opcode else I.M.mulhu st opcode | 4 -> if funct7 = 0 then I.Rtype.logxor st opcode else I.M.div st opcode | 5 -> ( match funct7 with | 0 -> I.Rtype.srl st opcode | 1 -> I.M.divu st opcode | 0x20 -> I.Rtype.sra st opcode | _ -> assert false) | 6 -> if funct7 = 0 then I.Rtype.logor st opcode else I.M.rem st opcode | 7 -> if funct7 = 0 then I.Rtype.logand st opcode else I.M.remu st opcode | _ -> assert false (* Instructions with opcode 0x3b (0b0111011) are R type (or M extension) register arithmetic on 32bit words in 64 bit mode *) let lift_0x3b st opcode = let funct7 = funct7 opcode in ins @@ match funct3 opcode with | 0 -> ( match funct7 with | 0 -> I.Rtype.addw st opcode | 1 -> I.M.mulw st opcode | 0x20 -> I.Rtype.subw st opcode | _ -> assert false) | 1 -> assert (funct7 = 0); I.Rtype.sllw st opcode | 4 -> assert (funct7 = 1); I.M.divw st opcode | 5 -> ( match funct7 with | 0 -> I.Rtype.srlw st opcode | 0x20 -> I.Rtype.sraw st opcode | 1 -> I.M.divuw st opcode | _ -> assert false) | 6 -> assert (funct7 = 1); I.M.remw st opcode | 7 -> assert (funct7 = 1); I.M.remuw st opcode | _ -> assert false (* Instructions with opcode 0x3 (0b0000011) are I type Memory load rd <- M[rs1 + imm] *) let lift_0x3 st opcode = let ret (mnemonic, dba) = ins @@ Inst.create ~opcode ~mnemonic ~dba in match funct3 opcode with | 0 -> ret @@ I.Itype.lb st opcode | 1 -> ret @@ I.Itype.lh st opcode | 2 -> ret @@ I.Itype.lw st opcode | 4 -> ret @@ I.Itype.lbu st opcode | 5 -> ret @@ I.Itype.lhu st opcode (* RV64I *) | 3 -> ret @@ I.Itype.ld st opcode | 6 -> ret @@ I.Itype.lwu st opcode | _ -> assert false (* Instructions with opcode 0x63 (0b1100011) are B type Conditionnal jumps (if rs1 ?? rs2 then PC = PC + imm) *) let lift_0x63 st opcode = match funct3 opcode with | 0 -> I.Stype.beq st opcode | 1 -> I.Stype.bne st opcode | 4 -> I.Stype.blt st opcode | 5 -> I.Stype.bge st opcode | 6 -> I.Stype.bltu st opcode | 7 -> I.Stype.bgeu st opcode | _ -> assert false let fetch_opcode_operator bits = uint @@ Bitset.restrict ~lo:0 ~hi:6 bits let lift st opcode = let opc_op = fetch_opcode_operator opcode in L.debug "Opcode operator %x" opc_op; match opc_op with | 3 -> lift_0x3 st opcode | 0x0f -> unh "fence" | 0x73 -> unh "ecal/ebreak/csrr(w|s|c|/unimp...)" | 0x23 -> lift_0x23 st opcode | 0x13 -> lift_0x13 st opcode | 0x33 -> lift_0x33 st opcode | 0x1b -> lift_0x1b st opcode | 0x3b -> lift_0x3b st opcode | 0x17 -> let mnemonic, dba = I.Utype.auipc st opcode in ins @@ Inst.create ~mnemonic ~dba ~opcode | 0x37 -> let mnemonic, dba = I.Utype.lui st opcode in ins @@ Inst.create ~mnemonic ~dba ~opcode | 0x63 -> ins @@ lift_0x63 st opcode | 0x6f -> let mnemonic, dba = I.Jtype.jal ~call:true st opcode in ins @@ Inst.create ~mnemonic ~dba ~opcode | 0x67 -> let mnemonic, dba = I.Itype.jalr st opcode in ins @@ Inst.create ~mnemonic ~dba ~opcode | _ -> unk @@ Format.asprintf "Unknown opcode %a" Bitvector.pp_hex opcode end module Compressed = struct let lift st bits = let quadrant = uint @@ Bitset.restrict bits ~lo:0 ~hi:1 in L.debug "Compressed instruction, quadrant %d" quadrant; match quadrant with | 0 -> I.C.c0 st bits | 1 -> I.C.c1 st bits | 2 -> I.C.c2 st bits | 3 -> fail "Reserved for uncompressed opcode" | n -> let msg = Printf.sprintf "Unexpected quadrant value %d" n in fail msg end let lift st bits = if is_compressed bits then Compressed.lift (D_status.switch16 st) bits else Uncompressed.lift (D_status.switch32 st) bits let decode reader vaddr = let size, bits = let bits = Reader.Peek.bv16 reader in L.debug "RISC-V peeked bits %a" Bv.pp_hex bits; if is_compressed bits then (2, Reader.Read.bv16 reader) else (4, Reader.Read.bv32 reader) in L.debug "Decoding RISC-V bits %a" Bv.pp_hex bits; let st = D_status.create vaddr in let opcode = String_utils.to_hex (Bitvector.to_asciistring bits) in match lift st bits with | Unhandled mnemonic_hint -> let mnemonic = Mnemonic.unsupported ~mnemonic_hint () in let ginst = Instruction.Generic.create size opcode mnemonic in L.debug "unhandled %s" mnemonic_hint; ( ginst, Dhunk.singleton (Dba.Instr.stop (Some (Unsupported mnemonic_hint))) ) | (exception Assert_failure _) | Unknown _ -> let mnemonic = Mnemonic.unknown in let ginst = Instruction.Generic.create size opcode mnemonic in L.debug "unknown %s" opcode; (ginst, Dhunk.singleton (Dba.Instr.stop (Some (Undecoded opcode)))) | Inst i -> let open Inst in let mnemonic = Mnemonic.supported i.mnemonic Format.pp_print_string in let ginst = Instruction.Generic.create size opcode mnemonic in let dhunk = D.Block.to_dba i.dba in L.debug "@[<hov>Dba:@ %a@]@]" Dhunk.pp dhunk; (ginst, dhunk) end (* For a simplistic interface, only expose the decode function *) module Reg32 : Riscv_arch.RegisterSize = struct let size = Riscv_arch.Mode.m32 end module Riscv32_to_Dba = Riscv_to_Dba (Reg32) let decode_32 = Riscv32_to_Dba.decode module Reg64 : Riscv_arch.RegisterSize = struct let size = Riscv_arch.Mode.m64 end module Riscv64_to_Dba = Riscv_to_Dba (Reg64) let decode_64 = Riscv64_to_Dba.decode let () = Decoder.register (Machine.riscv `x32) decode_32 let () = Decoder.register (Machine.riscv `x64) decode_64
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>