package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec_cli_xtrasec/xtrasec.ml.html
Source file xtrasec.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) (* Xtrasec main algorithm, which consists in analyzing the sequence of instructions given by the pintool, and decode it into either a formula or a LLVM module. *) (* Note: this function is x86-specific. *) let register_to_size = function | "CF" -> 1 | "DF" -> 1 | "ZF" -> 1 | "OF" -> 1 | "SF" -> 1 | "AF" -> 1 | "PF" -> 1 | "eax" -> 32 | "ecx" -> 32 | "edx" -> 32 | "ebx" -> 32 | "esp" -> 32 | "ebp" -> 32 | "esi" -> 32 | "edi" -> 32 | "mm0" -> 64 | "mm1" -> 64 | "mm2" -> 64 | "mm3" -> 64 | "mm4" -> 64 | "mm5" -> 64 | "mm6" -> 64 | "mm7" -> 64 | "st0" -> 80 | "st1" -> 80 | "st2" -> 80 | "st3" -> 80 | "st4" -> 80 | "st5" -> 80 | "st6" -> 80 | "st7" -> 80 | "xmm0" -> 128 | "xmm1" -> 128 | "xmm2" -> 128 | "xmm3" -> 128 | "xmm4" -> 128 | "xmm5" -> 128 | "xmm6" -> 128 | "xmm7" -> 128 | "fs" -> 16 | "gs" -> 16 | reg -> failwith ("register_to_size: unknown register " ^ reg) (******** The algorithm is parametrized by the wanted output. ********) module Make (Param : sig include Generic_decoder_sig.Instr_Input (* Says that we do not know anything after memory, for instance after a system call. *) val clear_memory : State.t -> State.t end) : sig val parse : Param.State.t -> string -> Param.State.t end = struct (* Adds the concretization informations to an existing Param. *) module Param2 : sig include Generic_decoder_sig.Instr_Input with module State = Param.State and type boolean = Param.boolean and type binary = Param.binary val load_addr_info : Virtual_address.t option ref val store_addr_info : Virtual_address.t option ref end = struct include Param let load_addr_info = ref None let store_addr_info = ref None let add_assertion state address v = match Xtrasec_options.Concretize_mem.get () with | `No -> state | `Exact -> let v, state = Param.Binary.biconst ~size:32 (Virtual_address.to_bigint v) state in let assertion, state = Param.Binary.beq ~size:32 address v state in snd @@ Param.assume assertion state | `Approximate i -> let assertion_inf, state = (* Saturation if underflow. *) let addr = Z.of_int @@ max 0 @@ (-i + Virtual_address.to_int v) in let addr, state = Param.Binary.biconst ~size:32 addr state in Param.Binary.biule ~size:32 addr address state in let assertion_sup, state = (* Saturation if overflow *) let addr = Z.of_int @@ min ((1 lsl 32) - 1) @@ (i + Virtual_address.to_int v) in let addr, state = Param.Binary.biconst ~size:32 addr state in Param.Binary.biule ~size:32 address addr state in let assertion, state = Param.Boolean.( && ) assertion_inf assertion_sup state in snd @@ Param.assume assertion state let store ~size endian addr value state = let state = match !store_addr_info with | None -> state | Some v -> add_assertion state addr v in Param.store ~size endian addr value state let load ~size endian addr state = let state = match !load_addr_info with | None -> state | Some v -> add_assertion state addr v in Param.load ~size endian addr state end module M = Generic_decoder.Decode_Instr (Param2) (* The algorithm explore traces non-deterministically, and back-up when it finds out that we did not followed the correct trace (e.g. when the next instruction in the trace is incompatible with the destination of a branch. Note: This algorithm is problematic in the case when several paths in the DBA can lead to the same next instruction in the trace, which does not seem to happen on x86. A better algorithm should be using path-merging for these cases. *) type trace = Final_State of Param.State.t | Wrong_Trace (* Unhandled corresponds to instructions that cannot be decoded into DBA. *) type dhunk_type = Unhandled | Dhunk of Dhunk.t type enriched_ins = { (* The parsed instruction given by xtrasec. *) ins : Parsepin.ins; (* Normally, we realize that we are on a wrong trace when the final jump of an instruction does not match the address of the next instruction in the trace. Some instructions are handled specially (e.g. we unroll instructions that have a REP prefix); in this case we do not perform the check. *) check_outgoing_edge : bool; (* Dhunk if present. *) dhunk : dhunk_type; (* Mnemonic, for debugging. *) mnemonic : string; (* Size of the instruction in bytes. *) size : int; } exception LastInstruction (* Wrapper around Parsepin.pop_ins to add the additional informations. *) let pop_enriched_ins x = match Parsepin.pop_ins x with | None -> raise LastInstruction | Some (ins, lp) -> ( let open Parsepin in let { address = addr; code; _ } = ins in (* Remove rep and repne prefix; the xtrasec instrumentation repeats the instruction in the trace, so we known how many of them to put (i.e. we can unroll the rep precisely). *) let rep, code = if code.[0] = 'f' && (code.[1] == '2' || code.[1] == '3') then (true, String.sub code 2 (String.length code - 2)) else (false, code) in (* We remove the rep prefix, so the ougoing edge may not be the right one, as the instruction may appear again. *) let check_outgoing_edge = not rep in try let inst, dhunk = X86toDba.decode_binstream ~base_addr:addr (Binstream.of_nibbles code) in let size = Size.Byte.to_int inst.X86Instruction.size in let mnemonic = Format.asprintf "%a" X86Instruction.pp_mnemonic inst in (* Xtrasec_options.Logger.result "parsed ins %d %x %s res %s" count (Virtual_address.to_int addr) code mnemonic; *) ({ ins; check_outgoing_edge; dhunk = Dhunk dhunk; size; mnemonic }, lp) with Decoder.InstructionUnhandled _ -> (* Note: we cannot assume that these instructions jump to the next in sequence; this is not the case e.g. for sysenter instructions on Linux. *) (* let next_addr = Bitvector.create (Bigint.big_int_of_int ((Virtual_address.to_int addr) + (String.length code/2))) 32 in * Xtrasec_options.Logger.result "next_addr: %a" Bitvector.pp_hex next_addr; *) let mnemonic = "binsec_unhandled" in let size = String.length code / 2 in ({ ins; check_outgoing_edge; dhunk = Unhandled; size; mnemonic }, lp)) (* Handle the next instruction. It must have been already parsed because of the edge checking, so: - it is passed as an argument here - lp points to the further instruction. - it has not been handled by acc yet. *) let rec do_next acc ins lp = let open Parsepin in let { count; address; code; _ } = ins.ins in let comment = Format.asprintf "ins %08d @0x%x %s %s" count (Virtual_address.to_int address) code ins.mnemonic in let acc = Param.add_comment comment acc in match ins with | { dhunk = Unhandled; _ } -> let acc = Param.clear_memory acc in let ins, lp = pop_enriched_ins lp in do_next acc ins lp | { dhunk = Dhunk dhunk; _ } as ins -> (* Provide the concretization informations to the decoder. Note that when there are several loads, we don't know which address correspond to which load, so we cannot make use of the information. *) let () = Param2.load_addr_info := let open Parsepin in match ins.ins.Parsepin.mem_read with | Zero | Several -> None | One x -> Some x in let () = Param2.store_addr_info := let open Parsepin in match ins.ins.Parsepin.mem_written with | Zero | Several -> None | One x -> Some x in (* Process DBA instruction i in dhunk. *) let rec do_dba_instr acc i = let instr = match Dhunk.inst dhunk i with None -> assert false | Some x -> x in let jt, acc = M.instruction acc instr in let open Generic_decoder_sig in match jt with | JKStop -> Final_State acc | JKAssume _ -> assert false | JKJump jt -> do_edge acc jt | JKIf (cond, targ1, targ2) -> ( (* TODO: Some instructions really have two behaviours. This should be handled with path merging, or using the concretization to re-compute cond. *) let res1 = let (), acc = Param.assume cond acc in do_edge acc targ1 in match res1 with | Final_State x -> Final_State x | Wrong_Trace -> let ncond, acc = Param.Boolean.not cond acc in let (), acc = Param.assume ncond acc in do_edge acc targ2) (* Perform the necessary actions according to whether we are leaving [ins]. *) and do_edge acc = let open Generic_decoder_sig in function | Static (Dba.JInner i') -> do_dba_instr acc i' | Static (Dba.JOuter a) -> let acc = do_instruction_end acc ins in do_outer a acc ins lp | Dynamic x -> let acc = do_instruction_end acc ins in do_dynamic x acc ins lp in do_dba_instr acc 0 (* (Dhunk.start dhunk) *) (* Modify the state at the end of the instruction. This is mainly to add assertions regarding concretization. *) and do_instruction_end acc ins = let add_assertion reg value acc = let size = register_to_size reg in let reg, acc = Param.get_var ~size reg acc in let value, acc = Param.Binary.biconst ~size (Virtual_address.to_bigint value) acc in let assertion, acc = Param.Binary.beq ~size reg value acc in let (), acc = Param.assume assertion acc in acc in let regs_to_concretize = Xtrasec_options.Concretize_regs.get () in List.fold_left (fun acc (reg, value) -> match reg with | "eflags" -> acc (* Need to be handled specially, ignored for now. *) | ("esp" | "ebp") when List.mem `Stack regs_to_concretize -> add_assertion reg value acc | _ when List.mem `All regs_to_concretize -> add_assertion reg value acc | reg when List.mem (`Register reg) regs_to_concretize -> add_assertion reg value acc | _ -> acc) acc ins.ins.Parsepin.reg_values (* Handle leaving the instruction with a static jump. *) and do_outer a acc ins lp = assert (a.Dba.id == 0); match pop_enriched_ins lp with | exception LastInstruction -> Final_State acc | ins', lp -> if ins.check_outgoing_edge && not (Virtual_address.equal a.Dba.base ins'.ins.Parsepin.address) then ( Xtrasec_options.Logger.result "Wrong trace a.base %a addr'%x" Virtual_address.pp a.Dba.base (Virtual_address.to_int ins'.ins.Parsepin.address); Wrong_Trace) else do_next acc ins' lp (* Handle leaving the instruction with a dynamic jump. *) and do_dynamic x acc ins lp = match pop_enriched_ins lp with | exception LastInstruction -> Final_State acc | ins', lp -> let addr' = ins'.ins.Parsepin.address in let acc = if ins.check_outgoing_edge then (* Asserts that this should be a feasible jump. *) let addr', acc = Param.Binary.biconst ~size:32 (Virtual_address.to_bigint addr') acc in let cond, acc = Param.Binary.beq ~size:32 x addr' acc in snd @@ Param.assume cond acc else acc in do_next acc ins' lp (* Main algorithm. *) let parse initial_state file = let lp = Parsepin.from file in let ins, lp = pop_enriched_ins lp in match do_next initial_state ins lp with | Wrong_Trace -> assert false | Final_State state -> state end (**************** Instantiation on Formulas and LLVM ****************) module With_Formula = Formula_decoder.Instr_to_Formula module Parse_formula = Make (With_Formula) let run_formula input_file output_file = let state = Parse_formula.parse With_Formula.initial_state input_file in let out = open_out output_file in Format.fprintf (Format.formatter_of_out_channel out) "%a%a@\n(check-sat)@." (Binsec_smtlib.Formula.pp_header ~theory:(Smt_options.Theory.get ())) () Binsec_smtlib.Formula.pp_formula @@ With_Formula.get_formula state; close_out out let run input_file = if Xtrasec_options.Output_smt.is_set () then run_formula input_file @@ Xtrasec_options.Output_smt.get () let main () = if Xtrasec_options.is_enabled () then if not @@ Xtrasec_options.Trace_file.is_set () then failwith "Trace file must be given" else run @@ Xtrasec_options.Trace_file.get () let _ = Cli.Boot.enlist ~name:"xtrasec run" ~f:main
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>