package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec_cli_disasm/disasm.ml.html
Source file disasm.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Dba open Errors open Format open Disasm_options module Cfg = Instr_cfg module Program = struct type t = { instructions : Cfg.t; callsites : Virtual_address.Set.t; entrypoints : Virtual_address.Set.t; unresolved_jumps : Virtual_address.Set.t; } let empty = { instructions = Cfg.create 1; callsites = Virtual_address.Set.empty; entrypoints = Virtual_address.Set.empty; unresolved_jumps = Virtual_address.Set.empty; } let create ?(callsites = Virtual_address.Set.empty) ?(entrypoints = Virtual_address.Set.empty) ?(unresolved_jumps = Virtual_address.Set.empty) instructions = { instructions; callsites; entrypoints; unresolved_jumps } let on_instructions f p = { p with instructions = f p.instructions } let on_callsites f p = { p with callsites = f p.callsites } let is_callsite vaddr p = Virtual_address.Set.mem vaddr p.callsites let add_callsite p callsite = on_callsites (Virtual_address.Set.add callsite) p let add_callsites p callsites = Virtual_address.Set.fold (fun c p -> add_callsite p c) callsites p let add_unresolved_jump p address = { p with unresolved_jumps = Virtual_address.Set.add address p.unresolved_jumps; } let ppf_tag_functions ppf = let print_open_stag _ = () and print_close_stag = function | String_tag "function" -> fprintf ppf "@;<8 0> ; <_fun>" | _ -> () in let mark_open_stag = function | String_tag "function" -> if Logger.get_color () then "\027[0;36m" else "" | _ -> "" and mark_close_stag = function | String_tag "function" -> if Logger.get_color () then "\027[0m" else "" | _ -> "" in { mark_open_stag; mark_close_stag; print_open_stag; print_close_stag } let pp_no_dba ppf v = match Cfg.V.inst v with | None -> () | Some inst -> let vaddr = Cfg.V.addr v in let binstr = Instruction.to_generic_instruction inst in let opcode_str = asprintf "%a" Instruction.Generic.pp_opcode binstr |> String.trim in (* The X86 standard says in 2.3.11: - The maximum length of an Intel 64 and IA-32 instruction remains 15 bytes. Assuming the opcode is made of groups of 2 nibbles (1 byte), separated by 1 space, the max string length is computed to be: 2 * 15 + 15 / 2 = 38 Adjust (upwards) the value whenever other assembly languages have higher requirements. *) fprintf ppf "%a@ %-38s@ %a" Virtual_address.pp vaddr opcode_str Instruction.Generic.pp_mnemonic binstr let pp ppf p = pp_set_formatter_stag_functions ppf (ppf_tag_functions ppf); pp_set_mark_tags ppf true; pp_set_print_tags ppf true; fprintf ppf "@[<v 0>"; Cfg.iter_vertex_by_address (fun v -> let vaddr = Cfg.V.addr v in let tag_string = if is_callsite vaddr p then "function" else "" in fprintf ppf "@[<h>@{<%s>%a@}@]@ " tag_string pp_no_dba v) p.instructions; fprintf ppf "@]"; pp_set_mark_tags ppf false; pp_set_print_tags ppf false let count_program_instructions p = let h = Hashtbl.create 107 in let increase_count mnemonic = match Hashtbl.find h mnemonic with | n -> Hashtbl.replace h mnemonic (n + 1) | exception Not_found -> Hashtbl.add h mnemonic 1 in Cfg.iter_vertex (fun v -> match Cfg.V.inst v with | None -> () | Some inst -> increase_count inst.Instruction.mnemonic) p.instructions; h let pp_mnemonic_summary ppf p = let tbl = count_program_instructions p in let ordered = Hashtbl.fold (fun mnemonic count l -> (mnemonic, count) :: l) tbl [] |> (* Sorting in decreasing order *) List.sort (fun (_, c1) (_, c2) -> compare c2 c1) in fprintf ppf "@[<v 0>Different instruction count:%d@ %a@]" (Hashtbl.length tbl) (fun ppf l -> List.iter (fun (m, c) -> (* FIXME: Would be nicer to use tabulation boxes below *) let s = asprintf "%a" Mnemonic.pp m in fprintf ppf "@[<h>%-50s@ %d@]@ " s c) l) ordered let pp_dba ppf p = fprintf ppf "@[<v 0>%a@]" (fun ppf p -> Cfg.iter_vertex_by_address (fun v -> match Cfg.V.inst v with | None -> () | Some inst -> let dhunk = inst.Instruction.dba_block in fprintf ppf "@[<v 0>@[<h># -- %a@]@ %a@]@ @ " pp_no_dba v Dhunk.pp dhunk) p.instructions) p let pp_details ppf p = let pp_set title ppf s = if not (Virtual_address.Set.is_empty s) then ( let size = Virtual_address.Set.cardinal s in pp_open_vbox ppf 2; fprintf ppf "## %s (%d)@," title size; pp_open_hovbox ppf 0; Virtual_address.Set.iter (fun vaddr -> fprintf ppf "%a;@ " Virtual_address.pp vaddr) s; pp_close_box ppf (); pp_close_box ppf (); pp_print_cut ppf ()) in fprintf ppf "@[<v 0>%a%a%a@]" (pp_set "Entry points") p.entrypoints (pp_set "Functions") p.callsites (pp_set "Unresolved jumps") p.unresolved_jumps end open Program (* Should it be here ? *) let simplify_block = Dhunk.constant_propagation (* Add a block to the program in construction. This block is simplified. *) let add_block instr p = let hw_address = instr.Instruction.address in let block = instr.Instruction.dba_block in let simplified_block = simplify_block block in let instr' = Instruction.set_dba_block instr simplified_block in Cfg.add_inst p hw_address instr'; p let join_wl wl1 wl2 b1 b2 = List.fold_left (fun acc a -> let bv = Virtual_address.to_bigint (Dba_types.Caddress.base_value a) in if Z.gt b1 bv || Z.gt bv b2 then a :: acc else acc) wl1 wl2 (* FIXME: Use new blocks *) let extra_info dinstr = let rec aux = function | [] -> ([], None) | [ (_, Dba.Instr.SJump (JOuter dst, (Dba.Call add_ret as tag))) ] -> ([ dst; add_ret ], Some (None, Some dst, tag)) | [ (_, Dba.Instr.SJump (JOuter dst, tag)) ] -> ([ dst ], Some (None, Some dst, tag)) | [ (_, Dba.Instr.DJump (dst, (Dba.Call add_ret as tag))) ] -> ([ add_ret ], Some (Some dst, None, tag)) | [ (_, Dba.Instr.DJump (dst, tag)) ] -> ([], Some (Some dst, None, tag)) | [ (_, Dba.Instr.If (_, JOuter thn, _)); (_, Dba.Instr.SJump (JOuter nextaddr, _)); ] -> ([ thn; nextaddr ], None) | [ (_, Dba.Instr.If _); (_, Dba.Instr.SJump (JOuter nextaddr, _)) ] -> ([ nextaddr ], None) | [ _ ] | [ _; (_, Dba.Instr.Stop _) ] -> ([], None) (* no recurive successors *) | _ :: insns -> aux insns in let instlist = let open Instruction in let addr = dinstr.address in let block = dinstr.dba_block in Dba_types.( Dhunk.to_stmts block addr |> List.map (fun locinstr -> (Statement.location locinstr, Statement.instruction locinstr))) in aux instlist let find_calls instr jumps = let nexts, tag = extra_info instr in let calls = match tag with | None | Some (_, _, (Default | Dba.Return)) | Some (None, None, Dba.Call _) -> [] | Some (None, Some a, Dba.Call _) -> [ a ] | Some (Some _, None, Dba.Call _) -> ( let cur_addr = Dba_types.Caddress.block_start instr.Instruction.address in match Dba_types.Caddress.Map.find cur_addr jumps with | l -> l | exception Not_found -> []) | Some (Some _, Some _, Dba.Call _) -> (* Never generated by extra_info *) failwith "Disasm: both static and dynamic jump targets provided" in (nexts, calls) let get_call_targets instr = Dhunk.callees instr.Instruction.dba_block (* Gather all successors made in block except if the user has specified them. Another desirable behaviors could be to make the union of both sets. *) let successors user_jumps fsucc instr = let caddr = Instruction.get_caddress instr in let open Dba_types in match Caddress.Map.find caddr user_jumps with | l -> List.map Caddress.to_virtual_address l |> Virtual_address.Set.of_list | exception Not_found -> fsucc instr let get_instruction address stops = let caddress = Dba_types.Caddress.of_virtual_address address in if Dba_types.Caddress.Set.mem caddress stops then (Instruction.stop address, None) else Disasm_core.decode address (* Insert a node from inst with edgest to its successors in the graph [g] *) let insert g inst succs = let i_vaddr = inst.Instruction.address in (* Add the current instruction to the graph *) let src = Cfg.V.of_inst i_vaddr inst in Cfg.add_vertex g src; Virtual_address.Set.iter (fun vaddr -> Cfg.add_edge g src (Cfg.V.of_addr vaddr)) succs module Recursive = struct let level = 5 let insert_successors succs worklist = Logger.debug ~level:3 "Inserting succs: @[<hov 0>%a@]" (fun ppf vaddr_set -> Virtual_address.Set.iter (fun vaddr -> fprintf ppf "%a;@ " Virtual_address.pp vaddr) vaddr_set) succs; Virtual_address.Set.fold Disasm_core.W.add succs worklist let aux_rec visited program worklist jumps stops = let rec loop program visited wl = if Disasm_core.W.is_empty wl then program else let address, addresses = Disasm_core.W.pop wl in if not (Virtual_address.Set.mem address visited) then let visited = Virtual_address.Set.add address visited in try Logger.debug ~level "Recursive decoding @%a with %a" Virtual_address.pp address Disasm_core.W.pp wl; let instr, _nextaddr = get_instruction address stops in (* Computing successors *) let call_targets = get_call_targets instr in let successors = successors jumps Disasm_core.Successors.recursive instr in let wl' = insert_successors successors addresses in let p' = add_callsites program call_targets |> on_instructions (add_block instr) in loop p' visited wl' with | Invalid_address s -> Logger.warning "@[%s %@ %a@]" s Virtual_address.pp address; loop program visited worklist | Invalid_argument s -> Logger.fatal "@[invalid argument (%s)@]" s else loop program visited addresses in loop program visited worklist let apply_aux = aux_rec Virtual_address.Set.empty let disassemble ?(jumps = Dba_types.Caddress.Map.empty) ?(stops = Dba_types.Caddress.Set.empty) ?(visited = Virtual_address.Set.empty) ?(worklist = Disasm_core.W.empty) program = aux_rec visited program worklist jumps stops let apply parameters = let open Infos in let wl = Disasm_core.W.of_set parameters.entry_points in let jmps = parameters.jumps in let stops = parameters.stops in apply_aux Program.empty wl jmps stops module D = Disasm_core.Make (struct let successors = Disasm_core.Successors.recursive end) let slice ~start ~stop = let open Disasm_core in Logger.debug "@[<hov>Recursive disassembly on slice [%a, %a]@]" Virtual_address.pp start Virtual_address.pp stop; let filter_p x = x <= stop in let f p wl inst vnexts = Logger.debug "@[<hov>Successors %@ %a : %a@]" Virtual_address.pp inst.Instruction.address Virtual_address.pp_set vnexts; let wl' = W.add_filtered_set filter_p wl vnexts in (* The instruction should be handled. Succs may be out of bounds *) insert p.Program.instructions inst vnexts; let p' = let hunk = inst.Instruction.dba_block in if Dhunk.has_indirect_jump hunk then Program.add_unresolved_jump p inst.Instruction.address else p in (p', wl') in W.singleton start |> D.fold f Program.empty end (* The default interval end is the section's end address *) let compute_interval_end ~from_address ~img = let _, section_end = Loader_utils.section_slice_by_address ~address:from_address img in Logger.info "@[<h>Using section until %a@]" Virtual_address.pp section_end; (from_address, section_end) let compute_linear_disasm_intervals img parameters = let open Infos in if has_entry_points parameters then let open Virtual_address.Set in let rec loop acc eps = if is_empty eps then acc @ parameters.linear_addresses else let ep, eps = pop eps in let ep_interval = compute_interval_end ~from_address:ep ~img in loop (ep_interval :: acc) eps in loop [] parameters.entry_points else parameters.linear_addresses module Extended_linear = struct (* The recursive linear module implements the following disassembly strategy. Given a set of address intervals to disassemble linearly, it keeps track of static jumps. If a jump belongs to the current interval being disassembled, it is added to the worklist. The benefit is that we are able to find and disassemble overlapping instructions. Another possible strategy would be: - linearly disassemble intervals, keeping track of the jump targets. - in the end, gather all jump targets recognized. For those whose address has not been disassembled, start a recursive disassembly. *) let aux_reclinear addr iend program jumps wl visited stops = let initial_address = Virtual_address.to_bigint addr in let bigend = Virtual_address.to_bigint iend in let rec loop (addr : Virtual_address.t) program = if addr > iend then program else try Logger.debug ~level:4 "Disassembling %a" Virtual_address.pp addr; let open Dba_types in let instr, nextaddr = get_instruction addr stops in match nextaddr with | None -> program | Some succ_addr -> let wl', calls = find_calls instr jumps in (* Add all elemnts from [wl'] that are in the linear interval [initial_address, iend] *) let wl = join_wl wl wl' initial_address bigend |> List.map Caddress.to_virtual_address |> Disasm_core.W.of_list in let vcalls = List.fold_left (fun vset c -> let vaddr = Dba_types.Caddress.to_virtual_address c in Virtual_address.Set.add vaddr vset) Virtual_address.Set.empty calls in let p = add_callsites program vcalls in let p = Recursive.aux_rec visited p wl jumps stops |> Program.on_instructions (add_block instr) in loop succ_addr p with | Invalid_address s -> Logger.error "%s %@ %a" s Virtual_address.pp addr; program | Invalid_argument s -> Logger.error "invalid argument (%s)" s; program in loop addr program let apply parameters = let open Infos in let jmps = parameters.jumps in let stops = parameters.stops in let f program (start, end_) = let visited = Virtual_address.Set.empty in aux_reclinear start end_ program jmps [] visited stops in compute_linear_disasm_intervals (Kernel_functions.get_img ()) parameters |> List.fold_left f Program.empty end module Linear = struct open Disasm_core module I = Make (struct let successors = Successors.linear end) let aux_linear worklist program (stop : Virtual_address.t) = let should_stop = ( < ) stop in let step p worklist instruction disasm_succs = assert (Virtual_address.Set.cardinal disasm_succs <= 1); (* The instruction should be handled. Succs may be out of bounds *) let g = program.Program.instructions in (* There are 2 types of successors: 1. the linear one (aka disasm_succs) giving the next address to disassemble; 2. flow ones (aka jumps, ...) which should be rendered as edges in the CFG; We first add the latter as successors in the CFG. *) let hunk = instruction.Instruction.dba_block in let flow_succs = Dhunk.outer_jumps hunk in insert g instruction flow_succs; let p' = if Dhunk.has_indirect_jump hunk then let i_vaddr = instruction.Instruction.address in Program.add_unresolved_jump p i_vaddr else p in ( p', Virtual_address.Set.fold (fun vaddr w -> if should_stop vaddr then w else ( Cfg.add_vertex g (Cfg.V.of_addr vaddr); W.add vaddr w)) disasm_succs worklist ) in I.fold step program worklist (* Inelegant solution to a real problem. 15 bytes is the biggest x86 opcode. Thus it should be enough in the linear case to "catch" any computed successor of the upper bound of the desired linear interval. We always have [cur_address + increment] <= upper_bound + 15 *) let _pad_fifteen_bytes from_caddr stops = let rec loop increment s = if increment = 15 then s else let caddr = Dba_types.Caddress.add_int from_caddr increment in loop (succ increment) (Dba_types.Caddress.Set.add caddr s) in loop 0 stops let apply ~(byte_wise : bool) (intervals : Virtual_address.t Interval.t list) = if byte_wise then Disassembly_mode.set Linear_byte_wise else Disassembly_mode.set Linear; let open Interval in let aux program ival = Logger.result "@[<h>Linear disassembly from %a to %a@]" Virtual_address.pp ival.lo Virtual_address.pp ival.hi; let worklist = Disasm_core.W.singleton ival.lo in aux_linear worklist program ival.hi in let approx_cfg_size = List.fold_left (fun sz ival -> let h = Virtual_address.to_int ival.hi and l = Virtual_address.to_int ival.lo in h - l + sz + 1) 0 intervals in let cfg = Instr_cfg.create approx_cfg_size in let p = Program.create cfg in List.fold_left aux p intervals end (* FIXME: Yes I know program is unused *) [@@@ocaml.warning "-27"] let disassemble_slice ~program ~(slice_start : Virtual_address.t) ~(slice_end : Virtual_address.t) = match Disassembly_mode.get () with | Linear -> let ival = { Interval.hi = slice_end; Interval.lo = slice_start } in Linear.apply ~byte_wise:false [ ival ] | Recursive -> Recursive.slice ~start:slice_start ~stop:slice_end | _ -> assert false let disassemble_section ?(program = Program.empty) img section_name = let sec_start, sec_end = Loader_utils.section_slice_by_name section_name img in Logger.debug "Disassembling section %s : [%a -- %a]" section_name Virtual_address.pp sec_start Virtual_address.pp sec_end; disassemble_slice ~program ~slice_start:sec_start ~slice_end:sec_end let section = disassemble_section let sections ?(program = Program.empty) img secs = Basic_types.String.Set.fold (fun section_name program -> try disassemble_section ~program img section_name with Not_found -> Logger.warning "Skipping unknown section %s" section_name; program) secs program let disassemble_sections () = assert (Disasm_options.Sections.is_set ()); (* force linear mode *) Disasm_options.Disassembly_mode.set Disasm_options.Linear; let img = Kernel_functions.get_img () in sections img @@ Disasm_options.Sections.get () module Basics = Basic_types let disassemble_function g ~funcentry = let open Disasm_core in let wl = W.singleton funcentry in let module Dis = Make (struct let successors = Successors.linear end) in Dis.iter (fun wl i succs -> let src = i.Instruction.address in Cfg.add_inst g src i; if Dhunk.is_return i.Instruction.dba_block then wl else ( Virtual_address.Set.iter (fun dst -> Cfg.add_edge_a g src dst) succs; W.add_set wl succs)) wl; g let do_functions g img funcnames = let function_addrs = Basics.String.Set.fold (fun funcname addrs -> match Loader_utils.address_of_symbol_by_name ~name:funcname img with | None -> Logger.warning "No function named %s. Skipping." funcname; addrs | Some vaddr -> Logger.debug ~level:5 "Add address %a for function %s" Virtual_address.pp vaddr funcname; Virtual_address.Set.add vaddr addrs) funcnames Virtual_address.Set.empty in Virtual_address.Set.fold (fun funcentry g -> disassemble_function g ~funcentry) function_addrs g exception Entry_found of Cfg.V.t let pp_cfg ?(file = "function_cfg.dot") g = let oc = open_out_bin file in let entry = (* We just take the first vertex as given by iter as our entry point. This might not always be a good idea. *) try Cfg.iter_vertex (fun v -> raise (Entry_found v)) g; assert false with Entry_found v -> v in Cfg.output_graph oc g ~entry []; close_out oc let handle_functions funcnames = let img = Kernel_functions.get_img () in let g = do_functions (Cfg.create 17) img funcnames in pp_cfg g; Program.create g let pp_mode ppf = function | Disasm_options.Recursive -> Format.fprintf ppf "recursive" | Disasm_options.Extended_linear -> Format.fprintf ppf "extended linear" | Disasm_options.Linear -> Format.fprintf ppf "linear" | Disasm_options.Linear_byte_wise -> Format.fprintf ppf "linear byte wise" (* Get the entry points from the parameters file if they exist, Otherwise, just take what the loader says is the one entry point. This function should be removed once we get rid of the Infos module. *) let get_initial_entry_points img parameters = let open Infos in if has_entry_points parameters then parameters.entry_points else let ep = Loader_utils.entry_point img in Logger.info "Starting from default entry point %a" Virtual_address.pp ep; Virtual_address.Set.singleton ep let file ~filename = let img = Loader.load_file filename in let ep = Loader_utils.entry_point img in let slice_start, slice_end = compute_interval_end ~from_address:ep ~img in disassemble_slice ~program:Program.empty ~slice_start ~slice_end let disassemble parameters = let dba_file = Option.value ~default:"none" (DbaOutputFile.get_opt ()) and opcode_file = if OpcodeOutputFile.is_set () then OpcodeOutputFile.get () else "stdout" in Logger.debug "Disassembling mode %a (dba file=%s, opcode file=%s)" pp_mode (Disassembly_mode.get ()) dba_file opcode_file; if Functions.is_set () then let funcnames = Functions.get () in handle_functions funcnames (* Section disassembly has priority over specific entrypoints *) else if Sections.is_set () then ( if Infos.has_entry_points parameters then Logger.warning "Section disassembly overrides entry points option"; disassemble_sections ()) else if Kernel_options.Dba_config.is_set () then let linear_p ~byte_wise p = let open Infos in let open Interval in let (intervals : Virtual_address.t Interval.t list) = List.map (fun (lo, hi) -> { lo; hi }) p.linear_addresses in Linear.apply ~byte_wise intervals in let disassembler = match Disassembly_mode.get () with | Recursive -> Recursive.apply | Extended_linear -> Extended_linear.apply | Linear -> linear_p ~byte_wise:false | Linear_byte_wise -> linear_p ~byte_wise:true in disassembler parameters else let img = Kernel_functions.get_img () in let rec disasm_eps program eps = if Virtual_address.Set.is_empty eps then program else let ep, eps = Virtual_address.Set.pop eps in let slice_start, slice_end = compute_interval_end ~from_address:ep ~img in disasm_eps (disassemble_slice ~program ~slice_start ~slice_end) eps in let eps = get_initial_entry_points img parameters in Logger.debug ~level:2 "Entry points: @[%a@]" (fun ppf vset -> Virtual_address.Set.iter (fun e -> Format.fprintf ppf "%a;@ " Virtual_address.pp e) vset) eps; disasm_eps Program.empty eps let pp_to_file ~filename pp value = let oc = open_out filename in let ppf = Format.formatter_of_out_channel oc in fprintf ppf "%a@?" pp value; close_out oc let run () = let parameters = Infos.default in if not (Virtual_address.Set.is_empty parameters.Infos.entry_points) then Logger.result "Entry points: @[%a@]" (fun ppf vset -> Virtual_address.Set.iter (fun e -> Format.fprintf ppf "%a;@ " Virtual_address.pp e) vset) parameters.Infos.entry_points; let program = disassemble parameters in if OpcodeOutputFile.is_set () then pp_to_file ~filename:(OpcodeOutputFile.get ()) Program.pp program else Logger.result "@[<v 0>%a@ %a@]" Program.pp program Program.pp_details program; if ShowInstructionCount.get () then Logger.result "@[%a@]" Program.pp_mnemonic_summary program; Option.iter (fun filename -> pp_to_file ~filename Program.pp_dba program) (DbaOutputFile.get_opt ()) (* Other functionalities *) let custom_pp_dbainstrs opc ppf dba_block = let open Dba_printer.EICUnicode in let opc = Mnemonic.to_string opc in let spaces = String.make (String.length opc) ' ' in pp_set_margin ppf 250; fprintf ppf "%a" Dhunk.pp dba_block; fprintf ppf "@["; let pp_ith ppf n = Format.pp_print_option ~none:(fun ppf () -> Format.pp_print_string ppf "None") pp_instruction ppf (Dhunk.inst dba_block n) in let mypp ppf i = fprintf ppf "@[<h>%2d: %a@]" i pp_ith i in (match Dhunk.length dba_block with | 0 -> () | 1 -> fprintf ppf "@[<h>%s → %a@]" opc pp_ith 0 | 2 -> fprintf ppf "@[<v 0> %s ⎧1: %a@ %s ⎩2: %a@ @]" opc pp_ith 0 spaces pp_ith 1 | nelts -> let middle = nelts / 2 in let pp_bar fmt i = if i = middle then fprintf fmt "%s ⎨" opc else fprintf fmt "%s ⎪" spaces in let rec aux i = if i = 0 then ( fprintf ppf "@[<v 0>@[<h>%s ⎧%a@]@ " spaces mypp i; aux 1) else if i = nelts - 1 then fprintf ppf "@[<h>%s ⎩%a@]@]" spaces mypp i else ( fprintf ppf "@[<h>%a%a@]@ " pp_bar i mypp i; aux (i + 1)) in aux 0); fprintf ppf "@]" let check_hex_string s = let open String_utils in match lfindi s (fun c -> not (is_hex_char c)) with | Some i -> Logger.fatal "Invalid hexadecimal character '%c' in opcode %s" s.[i] s | None -> () let _pp_pretty_utf8 i = let open Instruction in Logger.result "@[<v 0>%a@]" (custom_pp_dbainstrs i.mnemonic) i.dba_block let inst_of_raw ?base raw = check_hex_string raw; Binstream.of_nibbles raw |> Disasm_core.decode_binstream ?base |> fst let decode raw = try let base = Virtual_address.of_string (Disasm_at.get ()) in let i = inst_of_raw ~base raw in Logger.result "%a" Instruction.pp i with Decoder.InstructionUnhandled s -> Logger.warning "Not decoded %s" s; exit 1 let main () = if Disasm_options.is_enabled () && Kernel_options.ExecFile.is_set () then if Disasm_options.CFG_graph.get () then Disasm_cfg.run () else ( Logger.info "Running disassembly"; run ()) let run_decode () = if Disasm_options.Decode_instruction.is_set () then decode (Disasm_options.Decode_instruction.get ()) let _ = Cli.Boot.enlist ~name:"disassembly run" ~f:main; Cli.Boot.enlist ~name:"decode hex" ~f:run_decode
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>