package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec_cli_bbsse/binsec_cli_bbsse.ml.html
Source file binsec_cli_bbsse.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Types open Options module V = Virtual_address module A = struct include Dba_types.Caddress let of_jump_target a = function Dba.JInner n -> reid a n | Dba.JOuter t -> t end module I = Dba.Instr module E = Dba.Expr module D = Directive module G = Path_generator module N = Binsec_base.Basic_types.Integers.Int module S = struct include Status let pp_expecting ppf = function | Unknown -> () | t -> Format.pp_print_string ppf " expecting "; pp ppf t let pp_expected ppf = function | Unknown -> () | t -> Format.pp_print_string ppf " (expected "; pp ppf t; Format.pp_print_char ppf ')' end module Predicate = struct type t = { addr : A.t; mnemonic : string; test : Dba.Expr.t; mutable status : S.t; expect : S.t; } end module Stat = struct let ground_truth = ref false let all_predicates = ref 0 let deemed_opaques = ref 0 let true_positives = ref 0 let false_positives = ref 0 let wrong_positives = ref 0 let deemed_clear = ref 0 let true_negatives = ref 0 let false_negatives = ref 0 let deemed_unreachable = ref 0 let true_unreachable = ref 0 let false_unreachable = ref 0 let failure = ref 0 let all_paths = ref 0 type time = { mutable sec : float } let search_time = { sec = 0. } let eval_time = { sec = 0. } let total_time = { sec = 0. } end module Eval = struct let run state (a, c, j) = incr Stat.all_paths; let t = Unix.gettimeofday () in let path = Path.init ~env:state ~conditions:c ~jump_targets:j in let r = Driver.start path a in Stat.eval_time.sec <- Stat.eval_time.sec +. Unix.gettimeofday () -. t; (r, path) end module Runner () = struct let = Path.State.Cookie.default () let () = Option.iter (fun f -> f cookie (Smt_options.backend (Smt_options.Solver.get ()))) (Path.State.more Symbolic.State.SetSMTSolver); Option.iter (fun t -> Option.iter (fun f -> f cookie t) (Path.State.more Symbolic.State.SetSMTSolverTimeout)) (Smt_options.Timeout.get_opt ()); Option.iter (fun p -> Option.iter (fun f -> f cookie p) (Path.State.more Symbolic.State.SetSMTDumpDir)) (Smt_options.DumpDir.get_opt ()) let rec loop : Env.t -> S.t -> 'a list -> S.t = fun state status paths -> Logger.debug ~level:2 "Current status: %a" S.pp status; match paths with | [] -> status | p :: paths -> ( match Eval.run state p with | Error Unsatisfiable_assumption, _ -> loop state status paths | Error _, _ -> Unknown | Ok test, path -> ( let sym = Path.state path in match status with | Opaque b -> ( match (Path.is_zero_v path test, b) with | True, false | False, true -> loop state status paths | False, false | True, true -> Clear | Unknown, _ -> ( let sym = Option.get (Path.State.assume (if b then Path.Value.unary Not test else test) sym) in match Path.State.check_sat cookie sym with | exception Symbolic.State.Unknown -> Unknown | None -> loop state status paths | Some _ -> Clear)) | _ (* i.e. Unreachable *) -> ( match Path.is_zero_v path test with | True -> loop state (Opaque false) paths | False -> loop state (Opaque true) paths | Unknown -> ( let enum = Path.State.enumerate cookie test sym in match Path.State.Enumeration.next enum with | exception Symbolic.State.Unknown -> Unknown | None -> loop state Unreachable paths | Some (bv, _) -> ( match Path.State.Enumeration.next enum with | exception Symbolic.State.Unknown -> Unknown | None -> loop state (Opaque (Bitvector.to_bool bv)) paths | Some _ -> Path.State.Enumeration.suspend enum; Clear))))) let run state n (p : Predicate.t) = let k = Unix.gettimeofday () in Logger.debug "Running BB-SSE at %a (%a)%a" A.pp_base p.addr Dba_printer.Ascii.pp_bl_term p.test S.pp_expecting p.expect; let t = Unix.gettimeofday () in let paths = G.enumerate_path state n p.addr in Logger.debug "Found %a paths" (fun ppf paths -> Format.pp_print_int ppf (List.length paths)) paths; Stat.search_time.sec <- Stat.search_time.sec +. Unix.gettimeofday () -. t; (match loop state Unreachable paths with | Unknown -> p.status <- Unknown; Logger.debug "Failed to handle predicate %a at %a%a" Dba_printer.Ascii.pp_bl_term p.test A.pp_base p.addr S.pp_expected p.expect | status -> p.status <- status; Logger.debug "Predicate %a at %a deemed %a%a" Dba_printer.Ascii.pp_bl_term p.test A.pp_base p.addr S.pp status S.pp_expected p.expect); Stat.total_time.sec <- Stat.total_time.sec +. Unix.gettimeofday () -. k let pp ppf () = let open Stat in Format.pp_open_vbox ppf 2; Format.fprintf ppf "total predicate %d" !all_predicates; Format.pp_print_space ppf (); Format.pp_open_vbox ppf 2; Format.fprintf ppf "total opaques predicates %d" (!deemed_opaques + !true_positives + !false_positives + !wrong_positives); if !ground_truth then ( Format.pp_print_space ppf (); Format.fprintf ppf "predicates deemed opaque %d" !deemed_opaques; Format.pp_print_space ppf (); Format.fprintf ppf "true positives %d" !true_positives; Format.pp_print_space ppf (); Format.fprintf ppf "false positives %d" !false_positives; Format.pp_print_space ppf (); Format.fprintf ppf "wrong positives %d" !wrong_positives); Format.pp_close_box ppf (); Format.pp_print_space ppf (); Format.pp_open_vbox ppf 2; Format.fprintf ppf "total unreachable predicates %d" (!deemed_unreachable + !true_unreachable + !false_unreachable); if !ground_truth then ( Format.pp_print_space ppf (); Format.fprintf ppf "predicates deemed unreachable %d" !deemed_unreachable; Format.pp_print_space ppf (); Format.fprintf ppf "true positives %d" !true_unreachable; Format.pp_print_space ppf (); Format.fprintf ppf "false positives %d" !false_unreachable); Format.pp_close_box ppf (); Format.pp_print_space ppf (); Format.pp_open_vbox ppf 2; Format.fprintf ppf "total clear predicates %d" (!deemed_clear + !true_negatives + !false_negatives); if !ground_truth then ( Format.pp_print_space ppf (); Format.fprintf ppf "predicates deemed clear %d" !deemed_clear; Format.pp_print_space ppf (); Format.fprintf ppf "true negatives %d" !true_negatives; Format.pp_print_space ppf (); Format.fprintf ppf "false negatives %d" !false_negatives); Format.pp_close_box ppf (); Format.pp_print_space ppf (); Format.fprintf ppf "total unfinished (timeout) %d" !failure; Format.pp_close_box ppf (); Format.pp_print_space ppf (); Format.pp_open_vbox ppf 0; Format.pp_print_space ppf (); if !ground_truth then Format.fprintf ppf "@[<h> search cumulative time %fs@]@," search_time.sec; Format.fprintf ppf "@[<h>total explored paths %d@]@," !all_paths; if !ground_truth then Format.fprintf ppf "@[<h> evaluation cumulative time %fs@]@," eval_time.sec; Format.fprintf ppf "@[<h>total satisfiability queries %d@]@," (Query_stat.Solver.get Sat + Query_stat.Solver.get Unsat + Query_stat.Solver.get Unknown); if !ground_truth then Format.fprintf ppf " @[<h> preprocessing cumulative time %fs@]@,\ @[<h> solving cumulative time %fs@]@," (Query_stat.Preprocess.Timer.get ()) (Query_stat.Solver.Timer.get ()); Format.fprintf ppf "@[<h> total cumulative time %fs@]@,@]" total_time.sec let rec loop state bounds n predicates i = let s = Array.length predicates in if i < s then ( let p : Predicate.t = Array.get predicates i in (match p.status with | Unknown | Clear -> Logger.debug ~level:0 "Analyzing the target %d / %d (%d step%s)" (i + 1) s (n + 1) (if n = 0 then "" else "s"); run state n p | Opaque _ | Unreachable -> ()); loop state bounds n predicates (i + 1)) else if not (N.Set.is_empty bounds) then let n = N.Set.min_elt bounds in loop state (N.Set.remove n bounds) (n - 1) predicates 0 else let open Stat in Array.iteri (fun i (p : Predicate.t) -> incr all_predicates; Logger.result "%d / %d: Predicate %s at %a deemed %a%a" (i + 1) s p.mnemonic A.pp_base p.addr S.pp p.status S.pp_expected p.expect; match (p.expect, p.status) with | Unknown, Unknown | Clear, Unknown | Opaque _, Unknown | Unreachable, Unknown -> incr failure | Unknown, Unreachable -> incr deemed_unreachable | Unknown, Opaque _ -> incr deemed_opaques | Unknown, Clear -> incr deemed_clear | Clear, Clear -> incr true_negatives | Clear, Opaque _ -> incr false_positives | Clear, Unreachable -> incr false_unreachable | Opaque _, Clear | Unreachable, Clear -> incr false_negatives | Opaque true, Opaque true | Opaque false, Opaque false -> incr true_positives | Unreachable, Unreachable -> incr true_unreachable | Opaque _, Opaque _ | Unreachable, Opaque _ -> incr wrong_positives | Opaque _, Unreachable -> incr false_unreachable) predicates; Logger.info "%a" pp () end let find_jumps f cfg = let jump_targets = Array.of_list (Ghidra_cfg.fold_vertex (fun v jumps -> if f v then match Ghidra_cfg.succ_e cfg v with | [ (_, Branch, _); (_, Fallthrough, _) ] | [ (_, Fallthrough, _); (_, Branch, _) ] -> v :: jumps | _ -> jumps else jumps) cfg []) in Array.sort V.compare jump_targets; jump_targets let run () = if is_enabled () || FindAllJumps.get () || FindJumpsBetween.is_set () then ( let cfg, ims = Ghidra_cfg.import () in (* calls to process, jumps to skip, ground truth *) let ctp, jts, gt = match Directives.get_opt () with | None -> (V.Set.empty, V.Set.empty, V.Map.empty) | Some path -> Logger.debug "Reading directives from %s" path; let ic = open_in path in List.fold_left (fun (ctp, jts, gt) -> function | D.ExpectAt (v, x) -> (ctp, jts, V.Map.add v x gt) | D.SkipJump v -> (ctp, V.Set.add v jts, gt) | D.ProcessCall v -> (V.Set.add v ctp, jts, gt)) (V.Set.empty, V.Set.empty, V.Map.empty) (Parser.directives Lexer.token (Lexing.from_channel ic)) in let ctp = Binsec_base.Basic_types.Integers.Int.Set.fold (fun a ctp -> V.Set.add (V.create a) ctp) (CallsToProceed.get ()) ctp in Stat.ground_truth := not (V.Map.is_empty gt); let jump_targets = if FindAllJumps.get () then find_jumps (fun v -> not (V.Set.mem v jts)) cfg else match FindJumpsBetween.get () with | [] -> ( match Kernel_functions.get_ep () with | None -> Logger.fatal "Please specify a start address" | Some v -> [| v |]) | [ lo; hi ] -> let start, stop = (Virtual_address.create lo, Virtual_address.create hi) in find_jumps (fun v -> V.compare v start > 0 && V.compare v stop < 0 && not (V.Set.mem v jts)) cfg | _ -> Logger.fatal "Find-jumps expects exactly two addresses." in let bbt = A.Htbl.create (Ghidra_cfg.nb_vertex cfg) (* rough estimation *) and dis = A.Htbl.create (Ghidra_cfg.nb_vertex cfg) (* rough estimation *) and dap = A.Htbl.create (Ghidra_cfg.nb_edges cfg) (* rough estimation *) and opa = A.Htbl.create (Array.length jump_targets) in (* Corner case: add a default source if executable entry point has a predecessor *) let entry = Loader.Img.entry (Kernel_functions.get_img ()) in if Ghidra_cfg.in_degree cfg entry <> 0 then ( let root = Virtual_address.create 0 in assert (not (V.equal root entry)); Ghidra_cfg.add_edge_e cfg (root, Fallthrough, entry); let root = A.of_virtual_address root and entry = A.of_virtual_address entry in A.Htbl.add dap entry [ root ]; A.Htbl.add dis root (I.static_jump (JOuter entry))); let state : Env.t = { cfg; ims; ctp; bbt; dis; dap; opa } in let bounds = match MaxBB.get () with [] -> N.Set.singleton 1 | l -> N.Set.of_list l in let n = N.Set.min_elt bounds in if n < 1 then Logger.fatal "The number of basic blocks should be greater or equal to 1."; let bounds = N.Set.remove n bounds in let predicates = Array.map (fun v -> try let addr, test = G.find_condition state v in Predicate. { addr; mnemonic = V.Htbl.find state.ims v; test; status = S.Unknown; expect = (try V.Map.find v gt with Not_found -> S.Unknown); } with Not_found -> Logger.fatal "Can not find a conditional jump at %a." V.pp v) jump_targets in let module R = Runner () in R.loop state bounds (n - 1) predicates 0) let _ = Cli.Boot.enlist ~name:"BB-SSE" ~f:run
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>