package binsec

  1. Overview
  2. Docs

doc/src/binsec.symbolic/path.ml.html

Source file path.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
(**************************************************************************)
(*  This file is part of BINSEC.                                          *)
(*                                                                        *)
(*  Copyright (C) 2016-2026                                               *)
(*    CEA (Commissariat à l'énergie atomique et aux énergies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

exception Undefined = State.Undefined
exception Undeclared = State.Undeclared
exception Unknown = State.Unknown
exception Non_mergeable = State.Non_mergeable

type trilean = Basic_types.Ternary.t

type ('state, 'model) partition =
  | False
  | True
  | Falsish of 'state
  | Trueish of 'state
  | Split of 'state * 'model list

module type S = sig
  type t
  type state
  type value
  type model

  val id : t -> int
  val pc : t -> Virtual_address.t
  val symbolize : t -> Dba.Var.t -> unit
  val assign : t -> Dba.Var.t -> Dba.Expr.t -> unit
  val clobber : t -> Dba.Var.t -> unit

  val load :
    t ->
    Dba.Var.t ->
    string option ->
    addr:Dba.Expr.t ->
    Machine.endianness ->
    unit

  val store :
    t ->
    string option ->
    addr:Dba.Expr.t ->
    Dba.Expr.t ->
    Machine.endianness ->
    unit

  val memcpy :
    t -> string option -> addr:Dba.Expr.t -> int -> Loader_types.buffer -> unit

  val predicate : t -> value list
  val is_symbolic : t -> Dba.Expr.t -> bool
  val is_zero : t -> Dba.Expr.t -> trilean
  val assume : t -> Dba.Expr.t -> model option
  val check_sat_assuming : t -> ?retain:bool -> Dba.Expr.t -> model option
  val partition : t -> Dba.Expr.t -> (state, model) partition

  val enumerate :
    t ->
    ?retain:bool ->
    ?n:int ->
    ?accumulator:model Bitvector.Map.t ->
    ?assuming:Dba.Expr.t ->
    Dba.Expr.t ->
    model Bitvector.Map.t

  val check_model : t -> ?retain:bool -> model -> bool
  val eval : t -> Dba.Expr.t -> Bitvector.t
  val get_value : t -> Dba.Expr.t -> value
  val lookup : t -> Dba.Var.t -> value

  val read :
    t -> string option -> addr:Dba.Expr.t -> int -> Machine.endianness -> value

  val symbols : t -> value list Dba_types.Var.Map.t

  type 'a key

  val get : t -> 'a key -> 'a
  val set : t -> 'a key -> 'a -> unit

  module Value : State.VALUE with type t = value

  val assign_v : t -> Dba.Var.t -> value -> unit

  val load_v :
    t -> Dba.Var.t -> string option -> addr:value -> Machine.endianness -> unit

  val store_v :
    t -> string option -> addr:value -> value -> Machine.endianness -> unit

  val memcpy_v :
    t -> string option -> addr:value -> int -> Loader_types.buffer -> unit

  val is_symbolic_v : t -> value -> bool
  val is_zero_v : t -> value -> trilean
  val assume_v : t -> value -> model option
  val check_sat_assuming_v : t -> ?retain:bool -> value -> model option
  val partition_v : t -> value -> (state, model) partition

  val enumerate_v :
    t ->
    ?retain:bool ->
    ?n:int ->
    ?accumulator:model Bitvector.Map.t ->
    ?assuming:value ->
    value ->
    model Bitvector.Map.t

  val eval_v : t -> value -> Bitvector.t

  val read_v :
    t -> string option -> addr:value -> int -> Machine.endianness -> value

  module Model : State.MODEL with type t = model and type value := value

  module State :
    State.S
      with type t = state
       and type Value.t = value
       and type Model.t = model

  val set_pc : t -> Virtual_address.t -> unit
  val models : t -> model list
  val set_models : t -> model list -> unit
  val state : t -> state
  val set_state : t -> state -> unit
  val transform_state : t -> (state -> state) -> unit
end

module Make (Metrics : Metrics.S) (State : State.S) : sig
  include
    S
      with type state = State.t
       and type value = State.Value.t
       and type model = State.Model.t
       and module State = State

  val create : unit -> t
  val cookie : t -> State.Cookie.t
  val fork : t -> t
  val merge : t -> t -> t option

  val declare_field :
    ?copy:('a -> 'a) -> ?merge:('a -> 'a -> 'a option) -> 'a -> 'a key
end = struct
  type data
  type t = data array
  type 'a field = int
  type merge_handler = M : 'a field * ('a -> 'a -> 'a option) -> merge_handler
  type copy_handler = C : 'a field * ('a -> 'a) -> copy_handler

  let default_merge : type a. a -> a -> a option =
   fun x y -> if x == y then Some x else None

  module State = struct
    include State

    let check_sat : Cookie.t -> t -> Model.t option =
     fun cookie state ->
      Metrics.Solver.Timer.start ();
      match check_sat cookie state with
      | Some _ as result ->
          Metrics.Solver.Timer.stop ();
          Metrics.Solver.incr Sat;
          result
      | None ->
          Metrics.Solver.Timer.stop ();
          Metrics.Solver.incr Unsat;
          None
      | exception (Unknown as e) ->
          Metrics.Solver.Timer.stop ();
          Metrics.Solver.incr Unknown;
          raise e

    let enumerate :
        Cookie.t -> Value.t -> ?except:Bitvector.t list -> t -> Enumeration.t =
     fun cookie target ?except state ->
      Metrics.Solver.Timer.start ();
      let result = enumerate cookie target ?except state in
      Metrics.Solver.Timer.stop ();
      result

    module Enumeration = struct
      include Enumeration

      let next : t -> (Bitvector.t * Model.t) option =
       fun enum ->
        Metrics.Solver.Timer.start ();
        match next enum with
        | Some _ as result ->
            Metrics.Solver.Timer.stop ();
            Metrics.Solver.incr Sat;
            result
        | None ->
            Metrics.Solver.Timer.stop ();
            Metrics.Solver.incr Unsat;
            None
        | exception (Unknown as e) ->
            Metrics.Solver.Timer.stop ();
            Metrics.Solver.incr Unknown;
            raise e
    end
  end

  module Value = State.Value
  module Model = State.Model

  type state = State.t
  and value = Value.t
  and model = Model.t

  module Field = struct
    type 'a t =
      | Id : int t
      | Pc : Virtual_address.t t
      | Nid : State.Uid.t t
      | Symbols : Value.t list Dba_types.Var.Map.t t
      | State : State.t t
      | Cookie : State.Cookie.t t
      | Models : Model.t list t
      | Last : unit t

    external unsafe_of_int : int -> 'a t = "%identity"
    external to_int : 'a t -> int = "%identity"

    let default : type a. a t -> a = function
      | Id -> 0
      | Pc -> Virtual_address.zero
      | Nid -> State.Uid.zero
      | Symbols -> Dba_types.Var.Map.empty
      | State -> State.empty ()
      | Cookie -> State.Cookie.default ()
      | Models -> [ Model.empty () ]
      | Last -> assert false

    let merge : type a. a t -> a -> a -> a option = function
      | Id -> fun x y -> Some (min x y)
      | Pc -> default_merge
      | Nid -> fun x y -> Some (max x y)
      | Symbols -> default_merge
      | State -> (
          fun x y -> try Some (State.merge x y) with Non_mergeable -> None)
      | Cookie -> default_merge
      | Models -> fun x y -> Some (List.append x y)
      | Last -> assert false

    let merge t = M (to_int t, merge t)

    let iter f =
      for i = 0 to to_int Last - 1 do
        f (unsafe_of_int i)
      done

    let last = to_int Last
  end

  external get : t -> 'a Field.t -> 'a = "%obj_field"
  external set : t -> 'a Field.t -> 'a -> unit = "%obj_set_field"

  let id path = get path Id
  let pc path = get path Pc
  let set_pc path addr = set path Pc addr
  let symbols path = get path Symbols
  let state path = get path State
  let cookie path = get path Cookie
  let models path = get path Models
  let set_models path models = set path Models models
  let set_state path state = set path State state
  let transform_state path f = set_state path (f (state path))

  let symbolize : t -> Dba.Var.t -> unit =
   fun path var ->
    let nid = get path Nid in
    set path Nid (State.Uid.succ nid);
    let value = Value.var nid var.name var.size in
    let symbols = get path Symbols in
    let stream =
      try Dba_types.Var.Map.find var symbols with Not_found -> []
    in
    set path Symbols (Dba_types.Var.Map.add var (value :: stream) symbols);
    set_state path (State.assign var value (state path))

  let clobber : t -> Dba.Var.t -> unit =
   fun path var ->
    let nid = get path Nid in
    set path Nid (State.Uid.succ nid);
    let value = Value.var nid var.name var.size in
    set_state path (State.assign var value (state path))

  let rec lookup : t -> Dba.Var.t -> Value.t =
   fun path var ->
    try State.lookup var (state path)
    with Undefined _ ->
      symbolize path var;
      lookup path var

  let rec get_value : t -> Dba.Expr.t -> Value.t =
    let uop e (o : Dba.Unary_op.t) : Term.unary Term.operator =
      match o with
      | Not -> Not
      | UMinus -> Minus
      | Sext n -> Sext (n - Dba.Expr.size_of e)
      | Uext n -> Uext (n - Dba.Expr.size_of e)
      | Restrict interval -> Restrict interval
    in
    let bop (op : Dba.Binary_op.t) : Term.binary Term.operator =
      match op with
      | Plus -> Plus
      | Minus -> Minus
      | Mult -> Mul
      | DivU -> Udiv
      | DivS -> Sdiv
      | RemU -> Urem
      | RemS -> Srem
      | Eq -> Eq
      | Diff -> Diff
      | LeqU -> Ule
      | LtU -> Ult
      | GeqU -> Uge
      | GtU -> Ugt
      | LeqS -> Sle
      | LtS -> Slt
      | GeqS -> Sge
      | GtS -> Sgt
      | Xor -> Xor
      | And -> And
      | Or -> Or
      | Concat -> Concat
      | LShift -> Lsl
      | RShiftU -> Lsr
      | RShiftS -> Asr
      | LeftRotate -> Rol
      | RightRotate -> Ror
    in
    fun path e ->
      match e with
      | Cst bv | Var { info = Symbol (_, (lazy bv)); _ } -> Value.constant bv
      | Var var -> lookup path var
      | Load (len, dir, addr, array) ->
          load path len array (get_value path addr) dir
      | Unary (f, x) -> Value.unary (uop x f) (get_value path x)
      | Binary (f, x, y) ->
          Value.binary (bop f) (get_value path x) (get_value path y)
      | Ite (c, r, e) -> (
          let c = get_value path c in
          match Value.is_zero c with
          | True -> get_value path e
          | False -> get_value path r
          | Unknown -> Value.ite c (get_value path r) (get_value path e))

  and load :
      t -> int -> string option -> Value.t -> Machine.endianness -> Value.t =
   fun path len array addr dir ->
    try
      let value, state =
        match array with
        | None -> State.read ~addr len dir (state path)
        | Some array -> State.select array ~addr len dir (state path)
      in
      set_state path state;
      value
    with Undeclared array ->
      let state = State.declare ~array (Value.sizeof addr) (state path) in
      set_state path state;
      load path len array addr dir

  let read_v :
      t -> string option -> addr:value -> int -> Machine.endianness -> Value.t =
   fun path array ~addr len dir -> load path len array addr dir

  let read :
      t ->
      string option ->
      addr:Dba.Expr.t ->
      int ->
      Machine.endianness ->
      Value.t =
   fun path array ~addr len dir ->
    read_v path array ~addr:(get_value path addr) len dir

  let assign_v : t -> Dba.Var.t -> value -> unit =
   fun path var value -> set_state path (State.assign var value (state path))

  let assign : t -> Dba.Var.t -> Dba.Expr.t -> unit =
   fun path var expr -> assign_v path var (get_value path expr)

  let load_v :
      t ->
      Dba.Var.t ->
      string option ->
      addr:value ->
      Machine.endianness ->
      unit =
   fun path var array ~addr dir ->
    let value = load path (var.size lsr 3) array addr dir in
    set_state path (State.assign var value (state path))

  let load :
      t ->
      Dba.Var.t ->
      string option ->
      addr:Dba.Expr.t ->
      Machine.endianness ->
      unit =
   fun path var array ~addr dir ->
    load_v path var array ~addr:(get_value path addr) dir

  let store_v :
      t -> string option -> addr:value -> value -> Machine.endianness -> unit =
   fun path array ~addr value dir ->
    let state = state path in
    match array with
    | None ->
        set_state path
          (try State.write ~addr value dir state
           with Undeclared array ->
             State.write ~addr value dir
               (State.declare ~array (Value.sizeof addr) state))
    | Some name ->
        set_state path
          (try State.store name ~addr value dir state
           with Undeclared array ->
             State.store name ~addr value dir
               (State.declare ~array (Value.sizeof addr) state))

  let store :
      t ->
      string option ->
      addr:Dba.Expr.t ->
      Dba.Expr.t ->
      Machine.endianness ->
      unit =
   fun path array ~addr value dir ->
    store_v path array ~addr:(get_value path addr) (get_value path value) dir

  let memcpy_v :
      t -> string option -> addr:value -> int -> Loader_types.buffer -> unit =
   fun path array ~addr len content ->
    let state = state path in
    set_state path
      (try State.memcpy array ~addr len content state
       with Undeclared array ->
         State.memcpy array ~addr len content
           (State.declare ~array (Value.sizeof addr) state))

  let memcpy :
      t ->
      string option ->
      addr:Dba.Expr.t ->
      int ->
      Loader_types.buffer ->
      unit =
   fun path array ~addr len content ->
    memcpy_v path array ~addr:(get_value path addr) len content

  let predicate : t -> value list = fun path -> State.predicate (state path)

  let is_symbolic_v : t -> value -> bool =
   fun path value -> State.is_symbolic value (state path)

  let is_symbolic : t -> Dba.Expr.t -> bool =
   fun path e -> is_symbolic_v path (get_value path e)

  let is_zero_v : t -> value -> trilean =
   fun path value -> State.is_zero value (state path)

  let is_zero : t -> Dba.Expr.t -> trilean =
   fun path e -> is_zero_v path (get_value path e)

  let assume_v : t -> value -> Model.t option =
   fun path value ->
    match Value.is_zero value with
    | True -> None
    | False -> Some (List.hd (models path))
    | Unknown -> (
        Metrics.Preprocess.Timer.start ();
        match State.assume value (state path) with
        | None ->
            Metrics.Preprocess.Timer.stop ();
            Metrics.Preprocess.incr Unsat;
            None
        | Some state -> (
            let models =
              List.fold_left
                (fun models model ->
                  if Bitvector.is_zero (Model.eval value model) then models
                  else model :: models)
                [] (models path)
            in
            Metrics.Preprocess.Timer.stop ();
            match models with
            | model :: _ ->
                Metrics.Preprocess.incr Sat;
                set_state path state;
                set_models path models;
                Some model
            | [] -> (
                Metrics.Preprocess.incr Unknown;
                match State.check_sat (cookie path) state with
                | None -> None
                | Some model ->
                    set_state path state;
                    set_models path [ model ];
                    Some model)))

  let assume : t -> Dba.Expr.t -> Model.t option =
   fun path e -> assume_v path (get_value path e)

  let check_sat_assuming_v : t -> ?retain:bool -> value -> Model.t option =
   fun path ?(retain = true) value ->
    let models = models path in
    match Value.is_zero value with
    | True -> None
    | False -> Some (List.hd models)
    | Unknown -> (
        Metrics.Preprocess.Timer.start ();
        match
          List.find
            (fun model -> Bitvector.is_one (Model.eval value model))
            models
        with
        | model ->
            Metrics.Preprocess.Timer.stop ();
            Metrics.Preprocess.incr Sat;
            Some model
        | exception Not_found -> (
            match State.assume value (state path) with
            | None ->
                Metrics.Preprocess.Timer.stop ();
                Metrics.Preprocess.incr Unsat;
                None
            | Some state -> (
                Metrics.Preprocess.Timer.stop ();
                Metrics.Preprocess.incr Unknown;
                match State.check_sat (cookie path) state with
                | None -> None
                | Some model ->
                    if retain then set_models path (model :: models);
                    Some model)))

  let check_sat_assuming : t -> ?retain:bool -> Dba.Expr.t -> Model.t option =
   fun path ?retain e -> check_sat_assuming_v path ?retain (get_value path e)

  let partition_v : t -> value -> (state, model) partition =
   fun path value ->
    match Value.is_zero value with
    | True -> False
    | False -> True
    | Unknown -> (
        let state = state path and models = models path in
        Metrics.Preprocess.Timer.start ();
        match State.is_zero value state with
        | True ->
            Metrics.Preprocess.Timer.stop ();
            False
        | False ->
            Metrics.Preprocess.Timer.stop ();
            True
        | Unknown -> (
            match
              List.partition
                (fun model -> Bitvector.is_one (Model.eval value model))
                models
            with
            | [], _ -> (
                set_state path
                  (Option.get (State.assume (Value.unary Not value) state));
                Metrics.Preprocess.incr Sat;
                let true_state = State.assume value state in
                Metrics.Preprocess.Timer.stop ();
                match true_state with
                | None ->
                    Metrics.Preprocess.incr Unsat;
                    False
                | Some true_state -> Falsish true_state)
            | _, [] -> (
                set_state path (Option.get (State.assume value state));
                Metrics.Preprocess.incr Sat;
                let false_state = State.assume (Value.unary Not value) state in
                Metrics.Preprocess.Timer.stop ();
                match false_state with
                | None ->
                    Metrics.Preprocess.incr Unsat;
                    True
                | Some false_state -> Trueish false_state)
            | true_models, false_models ->
                set_state path (Option.get (State.assume value state));
                set_models path true_models;
                let false_state =
                  Option.get (State.assume (Value.unary Not value) state)
                in
                Metrics.Preprocess.Timer.stop ();
                Metrics.Preprocess.incr Sat;
                Metrics.Preprocess.incr Unsat;
                Split (false_state, false_models)))

  let partition : t -> Dba.Expr.t -> (state, model) partition =
   fun path test -> partition_v path (get_value path test)

  let check_model : t -> ?retain:bool -> Model.t -> bool =
   fun path ?(retain = true) model ->
    let r =
      List.for_all
        (fun e -> Bitvector.is_one (Model.eval e model))
        (State.predicate (state path))
    in
    if retain && r then set_models path (model :: models path);
    r

  let enumerate_v :
      t ->
      ?retain:bool ->
      ?n:int ->
      ?accumulator:Model.t Bitvector.Map.t ->
      ?assuming:value ->
      value ->
      Model.t Bitvector.Map.t =
    let decr : int option -> int option = function
      | None -> None
      | Some n -> Some (n - 1)
    in
    let rec fold_enumeration :
        t ->
        bool ->
        int option ->
        State.Enumeration.t ->
        Model.t Bitvector.Map.t ->
        Model.t Bitvector.Map.t =
     fun path retain n enum result ->
      match n with
      | Some 0 ->
          State.Enumeration.suspend enum;
          result
      | None | Some _ -> (
          match State.Enumeration.next enum with
          | None -> result
          | Some (bv, model) ->
              if retain then set_models path (model :: models path);
              fold_enumeration path retain (decr n) enum
                (Bitvector.Map.add bv model result))
    in
    let check_valid : Value.t option -> Model.t -> bool =
     fun assumtpion model ->
      match assumtpion with
      | None -> true
      | Some cond -> Bitvector.to_bool (Model.eval cond model)
    in
    let ensure_valid : Value.t option -> State.t -> State.t option =
     fun assumption state ->
      match assumption with
      | None -> Some state
      | Some cond -> State.assume cond state
    in
    let rec fold_models :
        t ->
        bool ->
        int option ->
        Value.t option ->
        Value.t ->
        Bitvector.t list ->
        Model.t Bitvector.Map.t ->
        Model.t list ->
        Model.t Bitvector.Map.t =
     fun path retain n assumption value except result models ->
      match n with
      | Some 0 ->
          Metrics.Preprocess.Timer.stop ();
          result
      | Some _ | None -> (
          match models with
          | [] -> (
              match ensure_valid assumption (state path) with
              | None ->
                  Metrics.Preprocess.Timer.stop ();
                  Metrics.Preprocess.incr Unsat;
                  result
              | Some state ->
                  Metrics.Preprocess.Timer.stop ();
                  Metrics.Preprocess.incr Unknown;
                  fold_enumeration path retain n
                    (State.enumerate (cookie path) value ~except state)
                    result)
          | model :: models ->
              if check_valid assumption model then
                let bv = Model.eval value model in
                if Bitvector.Map.mem bv result then
                  fold_models path retain n assumption value except result
                    models
                else (
                  Metrics.Preprocess.incr Sat;
                  fold_models path retain (decr n) assumption value
                    (bv :: except)
                    (Bitvector.Map.add bv model result)
                    models)
              else
                fold_models path retain n assumption value except result models)
    in
    fun path ?(retain = true) ?n ?(accumulator = Bitvector.Map.empty) ?assuming
        value ->
      if Value.is_symbolic value then (
        Metrics.Preprocess.Timer.start ();
        fold_models path retain n assuming value [] accumulator (models path))
      else (
        Metrics.Preprocess.incr Sat;
        let model = List.hd (models path) in
        if check_valid assuming model then
          let bv = Model.eval value model in
          Bitvector.Map.singleton bv model
        else Bitvector.Map.empty)

  let enumerate :
      t ->
      ?retain:bool ->
      ?n:int ->
      ?accumulator:Model.t Bitvector.Map.t ->
      ?assuming:Dba.Expr.t ->
      Dba.Expr.t ->
      Model.t Bitvector.Map.t =
   fun path ?retain ?n ?accumulator ?assuming e ->
    enumerate_v path ?retain ?n ?accumulator
      ?assuming:(Option.map (get_value path) assuming)
      (get_value path e)

  let eval_v : t -> value -> Bitvector.t =
   fun path value -> Model.eval value (List.hd (models path))

  let eval : t -> Dba.Expr.t -> Bitvector.t =
   fun path e -> eval_v path (get_value path e)

  external make : int -> int -> data array = "caml_obj_block"

  let sealed = ref false
  let size = ref Field.last
  let template : t ref = ref (make 0 (2 lsl Z.numbits (Z.of_int Field.last)))
  let merge_handlers = Queue.create ()
  let copy_handlers = Queue.create ()
  let n = ref 0

  let () =
    Queue.add
      (C
         ( 0,
           fun _ ->
             incr n;
             !n ))
      copy_handlers;
    Field.iter (fun f ->
        set !template f (Field.default f);
        Queue.push (Field.merge f) merge_handlers)

  external get : t -> 'a field -> 'a = "%obj_field"
  external set : t -> 'a field -> 'a -> unit = "%obj_set_field"

  let add_field default =
    if !sealed then raise (Invalid_argument "sealed");
    let capacity = Array.length !template and fid = !size in
    if fid >= capacity then (
      let template' = make 0 (2 * capacity) in
      Array.blit !template 0 template' 0 capacity;
      template := template');
    set !template fid default;
    incr size;
    fid

  type 'a key = 'a field

  let declare_field :
      ?copy:('a -> 'a) -> ?merge:('a -> 'a -> 'a option) -> 'a -> 'a key =
   fun ?copy ?(merge = default_merge) data ->
    let fid = add_field data in
    Queue.add (M (fid, merge)) merge_handlers;
    Option.iter (fun copy -> Queue.add (C (fid, copy)) copy_handlers) copy;
    fid

  let create : unit -> t =
   fun () ->
    sealed := true;
    Array.sub !template 0 !size

  let fork : t -> t =
   fun path ->
    let path' = Array.copy path in
    Queue.iter
      (fun (C (fid, copy)) -> set path' fid (copy (get path' fid)))
      copy_handlers;
    path'

  let merge : t -> t -> t option =
   fun path path' ->
    let path = Array.copy path in
    try
      Queue.iter
        (fun (M (fid, merge)) ->
          match merge (get path fid) (get path' fid) with
          | None -> raise_notrace Exit
          | Some data -> set path fid data)
        merge_handlers;
      Some path
    with Exit -> None
end