package binsec
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Semantic analysis of binary executables
Install
dune-project
Dependency
Authors
-
AAdel Djoudi
-
BBenjamin Farinier
-
CChakib Foulani
-
DDorian Lesbre
-
FFrédéric Recoules
-
GGuillaume Girol
-
JJosselin Feist
-
LLesly-Ann Daniel
-
MMahmudul Faisal Al Ameen
-
MManh-Dung Nguyen
-
MMathéo Vergnolle
-
MMathilde Ollivier
-
MMatthieu Lemerre
-
NNicolas Bellec
-
OOlivier Nicole
-
RRichard Bonichon
-
RRobin David
-
SSébastien Bardin
-
SSoline Ducousso
-
TTa Thanh Dinh
-
YYaëlle Vinçont
-
YYanis Sellami
Maintainers
Sources
binsec-0.11.0.tbz
sha256=4cf70a0367fef6f33ee3165f05255914513ea0539b94ddfef0bd46fc9b42fa8a
sha512=cd67a5b7617f661a7786bef0c828ee55307cef5260dfecbb700a618be795d81b1ac49fc1a18c4904fd2eb8a182dc862b0159093028651e78e7dc743f5babf9e3
doc/src/binsec.sse/compiler.ml.html
Source file compiler.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105(**************************************************************************) (* This file is part of BINSEC. *) (* *) (* Copyright (C) 2016-2026 *) (* CEA (Commissariat à l'énergie atomique et aux énergies *) (* alternatives) *) (* *) (* you can redistribute it and/or modify it under the terms of the GNU *) (* Lesser General Public License as published by the Free Software *) (* Foundation, version 2.1. *) (* *) (* It is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* See the GNU Lesser General Public License version 2.1 *) (* for more details (enclosed in the file licenses/LGPLv2.1). *) (* *) (**************************************************************************) open Types module IntTbl = Basic_types.Integers.Int.Htbl module Var = Dba_types.Var module Expr = Dba_types.Expr type trace = No | Assembly | Ir type 'a primitive = 'a Types.primitive = | Unknown | Apply of ('a -> unit) | Call of ('a -> 'a Types.continuation) (** Information to be used by optimization. *) type 'a knowledge = | May_read : Var.Set.t option knowledge | May_write : Var.Set.t option knowledge type nonrec 'a fiber = ([ `All ], 'a) fiber module type ASSEMBLER = sig type 'a t val empty : (module Types.PATH with type t = 'a) -> 'a t val assign : 'a t -> Dba.Var.t -> Dba.Expr.t -> unit val clobber : 'a t -> Dba.Var.t -> unit val symbolize : 'a t -> Dba.Var.t -> unit val forget : 'a t -> Dba.Var.t -> unit val load : 'a t -> Dba.Var.t -> string option -> Machine.endianness -> Dba.Expr.t -> unit val store : 'a t -> string option -> Machine.endianness -> addr:Dba.Expr.t -> Dba.Expr.t -> unit val assume : 'a t -> Dba.Expr.t -> unit val check : 'a t -> Dba.Expr.t -> unit val apply : 'a t -> ?input:Dba_types.Var.Set.t -> ?output:Dba_types.Var.Set.t -> ('a -> unit) -> unit val commit : 'a t -> pred:([ `All ], 'a) Types.fiber -> ([ `All ], 'a) Types.fiber end type 'a config = { debug : trace; echo : 'a -> string -> unit; step : 'a -> Virtual_address.t -> int -> unit; path : (module PATH with type t = 'a); assembler : (module ASSEMBLER); mutable builtin_callbacks : (Ir.builtin -> 'a primitive) list; mutable may_read_callbacks : (Ir.builtin -> Var.Set.t option option) list; mutable may_write_callbacks : (Ir.builtin -> Var.Set.t option option) list; mutable annotation_printer : (Format.formatter -> Virtual_address.t -> unit) option; } let invalid_successor : 'a fiber = Tail_call (fun _ -> Signal (Error "invalid successor")) let rec resolve_builtin : Ir.builtin -> (Ir.builtin -> 'a primitive) list -> 'a primitive = fun builtin callbacks -> match callbacks with | [] -> Unknown | f :: callbacks -> ( match f builtin with | Unknown -> resolve_builtin builtin callbacks | prim -> prim) let rec resolve_knowledge : Ir.builtin -> (Ir.builtin -> 'a option option) list -> 'a option = fun builtin callbacks -> match callbacks with | [] -> None | f :: callbacks -> ( match f builtin with | None -> resolve_knowledge builtin callbacks | Some knowledge -> knowledge) let fallthrough_to_raw_fiber : (Ir.builtin -> 'a primitive) list -> Ir.fallthrough -> 'a fiber = fun builtin_callbacks kind -> match kind with | Nop | Goto _ -> invalid_successor | Hook { addr; _ } -> Step { addr; n = 0; succ = invalid_successor } | Instruction inst -> Step { addr = Instruction.address inst; n = 1; succ = invalid_successor } | Assign { var; rval } -> Assign { var; rval; succ = invalid_successor } | Clobber var -> Clobber { var; succ = invalid_successor } | Forget _ -> invalid_successor | Load { var; base; dir; addr } -> Load { var; base; dir; addr; succ = invalid_successor } | Store { base; dir; addr; rval } -> Store { base; dir; addr; rval; succ = invalid_successor } | Symbolize var -> Symbolize { var; succ = invalid_successor } | Assume test -> Assume { test; succ = invalid_successor } | Assert test -> Assert { test; succ = invalid_successor } | Builtin f -> ( match resolve_builtin f builtin_callbacks with | Unknown -> let msg = Format.asprintf "no handler for %a" Ir.pp_builtin f in Tail_call (fun _ -> Signal (Error msg)) | Apply f -> Apply { f; succ = invalid_successor } | Call f -> Call { f; succ = invalid_successor }) let node_to_raw_fiber : (Ir.builtin -> 'a primitive) list -> Ir.node -> 'a fiber = fun builtin_callbacks node -> match node with | Fallthrough { kind; _ } -> fallthrough_to_raw_fiber builtin_callbacks kind | Branch { test; _ } -> Branch { test; taken = invalid_successor; fallthrough = invalid_successor } | Terminator { kind = Goto { target; _ }; _ } -> Goto target | Terminator { kind = Jump { target; _ }; _ } -> Jump target | Terminator { kind = Halt; _ } -> Call { f = Fun.const (Signal Halt); succ = invalid_successor } | Terminator { kind = Cut; _ } -> Call { f = Fun.const (Signal Cut); succ = invalid_successor } | Terminator { kind = Die msg; _ } -> Call { f = Fun.const (Signal (Error msg)); succ = invalid_successor } | Terminator { kind = Builtin f; _ } -> ( match resolve_builtin f builtin_callbacks with | Unknown -> let msg = Format.asprintf "no handler for %a" Ir.pp_builtin f in Tail_call (fun _ -> Signal (Error msg)) | Apply f -> Apply { f; succ = invalid_successor } | Call f -> Tail_call f) let make_config : ?debug:trace -> echo:('a -> string -> unit) -> step:('a -> Virtual_address.t -> int -> unit) -> (module PATH with type t = 'a) -> (module ASSEMBLER) -> 'a config = fun ?(debug = No) ~echo ~step path assembler -> { debug; echo; step; path; assembler; builtin_callbacks = []; may_read_callbacks = []; may_write_callbacks = []; annotation_printer = None; } let register_builtin_callback : 'a config -> (Ir.builtin -> 'a primitive) -> unit = fun config callback -> config.builtin_callbacks <- callback :: config.builtin_callbacks let register_knowledge : type b. 'a config -> b knowledge -> (Ir.builtin -> b option) -> unit = fun config info callback -> match info with | May_read -> config.may_read_callbacks <- callback :: config.may_read_callbacks | May_write -> config.may_write_callbacks <- callback :: config.may_write_callbacks let set_annotation_printer : 'a config -> (Format.formatter -> Virtual_address.t -> unit) option -> unit = fun config annotation_printer -> config.annotation_printer <- annotation_printer let resolve_builtin : 'a config -> Ir.builtin -> 'a primitive = fun { builtin_callbacks; _ } builtin -> resolve_builtin builtin builtin_callbacks let relink : ?taken:bool -> pred:'a fiber -> 'a fiber -> unit = fun ?(taken = false) ~pred succ -> match pred with | Step t -> t.succ <- succ | Assign t -> t.succ <- succ | Clobber t -> t.succ <- succ | Load t -> t.succ <- succ | Store t -> t.succ <- succ | Symbolize t -> t.succ <- succ | Apply t -> t.succ <- succ | Assume t -> t.succ <- succ | Assert t -> t.succ <- succ | Branch t when taken -> t.taken <- succ | Branch t -> t.fallthrough <- succ | Call t -> t.succ <- succ | Goto _ | Jump _ | Tail_call _ -> () let _succ : 'a fiber -> 'a fiber = fun node -> match node with | Step { succ; _ } | Assign { succ; _ } | Clobber { succ; _ } | Load { succ; _ } | Store { succ; _ } | Symbolize { succ; _ } | Apply { succ; _ } | Assume { succ; _ } | Assert { succ; _ } | Call { succ; _ } -> succ | Branch _ | Goto _ | Jump _ | Tail_call _ -> raise (Invalid_argument "succ") let pp_array : Format.formatter -> string option -> unit = Format.pp_print_option ~none:(fun ppf () -> Format.pp_print_char ppf '@') Format.pp_print_string let pp_endianness : Format.formatter -> Machine.endianness -> unit = fun ppf dir -> Format.pp_print_char ppf (match dir with LittleEndian -> 'L' | BigEndian -> 'B') let pp_fiber : type a. Format.formatter -> (a, 'b) Types.fiber -> unit = fun ppf k -> match k with | Step _ -> Format.pp_print_string ppf "Step" | Assign { var = { name; _ }; rval; _ } -> Format.fprintf ppf "Assign (%s := %a)" name Dba_printer.Ascii.pp_expr rval | Clobber { var = { name; _ }; _ } -> Format.fprintf ppf "Clobber %s" name | Load { var = { name; _ }; base; addr; dir; _ } -> Format.fprintf ppf "Load (%s := %a[%a]%a)" name pp_array base Dba_printer.Ascii.pp_expr addr pp_endianness dir | Store { base; addr; dir; rval; _ } -> Format.fprintf ppf "Store (%a[%a]%a := %a)" pp_array base Dba_printer.Ascii.pp_expr addr pp_endianness dir Dba_printer.Ascii.pp_expr rval | Symbolize { var = { name; _ }; _ } -> Format.fprintf ppf "Symbolize %s" name | Apply _ -> Format.pp_print_string ppf "Apply" | Assume { test; _ } -> Format.fprintf ppf "Assume %a" Dba_printer.Ascii.pp_expr test | Assert { test; _ } -> Format.fprintf ppf "Check %a" Dba_printer.Ascii.pp_expr test | Branch { test; _ } -> Format.fprintf ppf "Ite %a" Dba_printer.Ascii.pp_expr test | Goto target -> Format.fprintf ppf "Goto %a" Virtual_address.pp target | Jump target -> Format.fprintf ppf "Jump %a" Dba_printer.Ascii.pp_expr target | Call _ -> Format.pp_print_string ppf "Call" | Tail_call _ -> Format.pp_print_string ppf "Tail_call" module Straight : ASSEMBLER = struct type 'a queue = None | Some of { head : 'a fiber; mutable tail : 'a fiber } type 'a t = 'a queue ref let push : 'a t -> 'a fiber -> unit = fun state fiber -> Logger.debug ~level:4 "+ %a" pp_fiber fiber; match !state with | None -> state := Some { head = fiber; tail = fiber } | Some q -> relink ~pred:q.tail fiber; q.tail <- fiber let empty : (module PATH with type t = 'a) -> 'a t = fun _ -> ref None let assign : 'a t -> Dba.Var.t -> Dba.Expr.t -> unit = fun state var rval -> push state (Assign { var; rval; succ = invalid_successor }) let clobber : 'a t -> Dba.Var.t -> unit = fun state var -> push state (Clobber { var; succ = invalid_successor }) let symbolize : 'a t -> Dba.Var.t -> unit = fun state var -> push state (Symbolize { var; succ = invalid_successor }) let forget : 'a t -> Dba.Var.t -> unit = fun _ _ -> () let load : 'a t -> Dba.Var.t -> string option -> Machine.endianness -> Dba.Expr.t -> unit = fun state var base dir addr -> push state (Load { var; base; dir; addr; succ = invalid_successor }) let store : 'a t -> string option -> Machine.endianness -> addr:Dba.Expr.t -> Dba.Expr.t -> unit = fun state base dir ~addr rval -> push state (Store { base; dir; addr; rval; succ = invalid_successor }) let assume : 'a t -> Dba.Expr.t -> unit = fun state test -> push state (Assume { test; succ = invalid_successor }) let check : 'a t -> Dba.Expr.t -> unit = fun state test -> push state (Assert { test; succ = invalid_successor }) let apply : 'a t -> ?input:Var.Set.t -> ?output:Var.Set.t -> ('a -> unit) -> unit = fun state ?input:_ ?output:_ f -> push state (Apply { f; succ = invalid_successor }) let commit : 'a t -> pred:'a fiber -> 'a fiber = fun state ~pred -> match !state with | None -> pred | Some { head; tail } -> relink ~pred head; state := None; tail end module Default : sig include ASSEMBLER val fprint_graph : Format.formatter -> 'a t -> unit end = struct module DGraph = Graph.Imperative.Digraph.Concrete (Basic_types.Integers.Int) module IntTbl = Basic_types.Integers.Int.Htbl module IntSet = Basic_types.Integers.Int.Set type 'a t = { mutable sync : IntSet.t; ordering : DGraph.t; nodes : 'a fiber IntTbl.t; definitions : (int * bool) Var.Htbl.t; uses : IntSet.t Var.Htbl.t; } let empty : type a. (module PATH with type t = a) -> a t = fun _ -> { sync = IntSet.empty; ordering = DGraph.create ~size:16 (); nodes = IntTbl.create 16; definitions = Var.Htbl.create 16; uses = Var.Htbl.create 16; } let push : 'a fiber IntTbl.t -> 'a fiber -> int = fun nodes node -> let n = IntTbl.length nodes in IntTbl.add nodes n node; n let get_dependencies : Dba.Expr.t -> Var.Set.t = fun exp -> Dba_types.Expr.collect_variables exp Var.Set.empty let add_use : 'a t -> int -> Var.t -> unit = fun state n var -> Var.Htbl.replace state.uses var (IntSet.add n (try Var.Htbl.find state.uses var with Not_found -> IntSet.empty)); match Var.Htbl.find state.definitions var with | exception Not_found -> if not (IntSet.is_empty state.sync) then DGraph.add_edge state.ordering (IntSet.max_elt state.sync) n | d, _ -> DGraph.add_edge state.ordering d n and remove_use : 'a t -> int -> Var.t -> unit = fun state i var -> Var.Htbl.replace state.uses var (IntSet.remove i (try Var.Htbl.find state.uses var with Not_found -> IntSet.empty)) let havoc : 'a t -> int -> Var.t -> unit = fun state n var -> (match Var.Htbl.find state.uses var with | exception Not_found -> if not (IntSet.is_empty state.sync) then DGraph.add_edge state.ordering (IntSet.max_elt state.sync) n | u -> IntSet.iter (fun i -> DGraph.add_edge state.ordering i n) u; Var.Htbl.remove state.uses var); match Var.Htbl.find state.definitions var with | exception Not_found -> () | i, _ -> ( match IntTbl.find state.nodes i with | Assign { rval = exp; _ } | Load { addr = exp; _ } -> Var.Set.iter (fun var -> remove_use state i var) (get_dependencies exp) | _ -> ()) let use : 'a t -> int -> Var.Set.t -> unit = fun state n set -> Var.Set.iter (fun var -> add_use state n var) set let assign : 'a t -> Dba.Var.t -> Dba.Expr.t -> unit = fun state var rval -> let n = push state.nodes (Assign { var; rval; succ = invalid_successor }) in havoc state n var; use state n (get_dependencies rval); Var.Htbl.replace state.definitions var (n, true) let clobber : 'a t -> Dba.Var.t -> unit = fun state var -> let n = push state.nodes (Clobber { var; succ = invalid_successor }) in havoc state n var; Var.Htbl.replace state.definitions var (n, true) let symbolize : 'a t -> Dba.Var.t -> unit = fun state var -> let n = push state.nodes (Symbolize { var; succ = invalid_successor }) in havoc state n var; Var.Htbl.replace state.definitions var (n, true) let forget : 'a t -> Dba.Var.t -> unit = fun state var -> match Var.Htbl.find state.definitions var with | exception Not_found -> () | i, _ -> Var.Htbl.replace state.definitions var (i, false) let load : 'a t -> Dba.Var.t -> string option -> Machine.endianness -> Dba.Expr.t -> unit = fun state var base dir addr -> let n = push state.nodes (Load { var; base; dir; addr; succ = invalid_successor }) in havoc state n var; use state n (get_dependencies addr); Var.Htbl.replace state.definitions var (n, true) let store : 'a t -> string option -> Machine.endianness -> addr:Dba.Expr.t -> Dba.Expr.t -> unit = fun state base dir ~addr rval -> use state (push state.nodes (Store { base; dir; addr; rval; succ = invalid_successor })) (Dba_types.Expr.collect_variables rval (Dba_types.Expr.collect_variables addr Var.Set.empty)) let assume : 'a t -> Dba.Expr.t -> unit = fun state test -> use state (push state.nodes (Assume { test; succ = invalid_successor })) (get_dependencies test) let check : 'a t -> Dba.Expr.t -> unit = fun state test -> use state (push state.nodes (Assert { test; succ = invalid_successor })) (get_dependencies test) let apply : 'a t -> ?input:Var.Set.t -> ?output:Var.Set.t -> ('a -> unit) -> unit = fun state ?input ?output f -> let n = push state.nodes (Apply { f; succ = invalid_successor }) in state.sync <- IntSet.add n state.sync; match (input, output) with | None, _ | _, None -> Var.Htbl.iter (fun _ (i, alive) -> if alive then DGraph.add_edge state.ordering i n) state.definitions; Var.Htbl.clear state.definitions; Var.Htbl.clear state.uses | Some input, Some output -> use state n input; Var.Set.iter (fun var -> havoc state n var; Var.Htbl.replace state.definitions var (n, true)) output let rec flush : 'a fiber IntTbl.t -> n:int -> int -> pred:'a fiber -> 'a fiber = fun nodes ~n i ~pred -> if i = n then pred else match IntTbl.find nodes i with | exception Not_found -> flush nodes ~n (i + 1) ~pred | node -> Logger.debug ~level:4 "+ %a" pp_fiber node; relink ~pred node; flush nodes ~n (i + 1) ~pred:node let substitute : Var.t -> Dba.Expr.t -> Dba.Expr.t -> Dba.Expr.t = fun tmp value exp -> Dba_types.Expr.substitute (Var.Map.singleton tmp value) exp let replace : 'a fiber IntTbl.t -> int -> Var.t -> Dba.Expr.t -> unit = fun nodes x tmp value -> match IntTbl.find nodes x with | Assign { var; rval; _ } -> IntTbl.replace nodes x (Assign { var; rval = substitute tmp value rval; succ = invalid_successor }) | Load { var; base; addr; dir; _ } -> IntTbl.replace nodes x (Load { var; base; addr = substitute tmp value addr; dir; succ = invalid_successor; }) | Store { base; addr; dir; rval; _ } -> IntTbl.replace nodes x (Store { base; addr = substitute tmp value addr; dir; rval = substitute tmp value rval; succ = invalid_successor; }) | Assume { test; _ } -> IntTbl.replace nodes x (Assume { test = substitute tmp value test; succ = invalid_successor }) | Assert { test; _ } -> IntTbl.replace nodes x (Assert { test = substitute tmp value test; succ = invalid_successor }) | _ -> () let forward : 'a t -> int -> Var.t -> Dba.Expr.t -> unit = fun { nodes; ordering; _ } i tmp value -> DGraph.iter_succ (fun x -> replace nodes x tmp value) ordering i; IntTbl.remove nodes i let fprint_graph : Format.formatter -> 'a t -> unit = fun ppf state -> let module Dot = Graph.Graphviz.Dot (struct include DGraph let graph_attributes _ = [] let default_vertex_attributes _ = [ `Shape `Box ] let pp_vertex ppf i = try pp_fiber ppf (IntTbl.find state.nodes i) with Not_found -> Format.pp_print_int ppf i let vertex_name v = Format.asprintf "\"%a\"" pp_vertex v let vertex_attributes _v = [] let get_subgraph _ = None let default_edge_attributes _ = [] let edge_attributes _ = [] end) in Dot.fprint_graph ppf state.ordering let last_successor : DGraph.t -> int -> int = fun ordering i -> DGraph.fold_succ max ordering i i let commit : 'a t -> pred:'a fiber -> 'a fiber = fun state ~pred -> let ordering = state.ordering and nodes = state.nodes in let n = IntTbl.length nodes in let sync = IntSet.add n state.sync in Var.Htbl.iter (fun _ (i, alive) -> if alive then DGraph.add_edge ordering i n) state.definitions; for i = 0 to n - 1 do match IntTbl.find nodes i with | Assign { var; rval = Cst _ as value; _ } when not (IntSet.exists (DGraph.mem_edge ordering i) sync) -> forward state i var value | Assign { var; rval = Var var'; _ } when Var.equal var var' -> IntTbl.remove nodes i | Assign { var; rval; _ } when DGraph.out_degree ordering i = 1 && not (IntSet.exists (DGraph.mem_edge ordering i) sync) -> forward state i var rval | Assign { var; rval; _ } when not (IntSet.exists (DGraph.mem_edge ordering i) sync) -> ( let last = last_successor ordering i in match IntTbl.find nodes (last_successor ordering i) with | Assign { var = var'; rval = Var var''; _ } when Var.equal var var'' && DGraph.in_degree ordering last = 1 -> DGraph.iter_succ (fun j -> replace nodes j var (Dba.Expr.v var')) ordering i; IntTbl.replace nodes i (Assign { var = var'; rval; succ = invalid_successor }) | _ -> ()) | Load { var; base; dir; addr; _ } when not (IntSet.exists (DGraph.mem_edge ordering i) sync) -> ( let last = last_successor ordering i in match IntTbl.find nodes (last_successor ordering i) with | Assign { var = var'; rval = Var _; _ } when DGraph.in_degree ordering last = 1 -> DGraph.iter_succ (fun j -> replace nodes j var (Dba.Expr.v var')) ordering i; IntTbl.replace nodes i (Load { var = var'; base; dir; addr; succ = invalid_successor }) | _ -> ()) | _ -> () done; flush nodes ~n 0 ~pred end let () = ignore Default.fprint_graph module Cse : ASSEMBLER = struct module type EVAL = sig type path type value val zero : value val eval : path -> value array -> Cse.opcode -> value end module X (P : PATH) : EVAL with type path = P.t and type value = P.value = struct type path = P.t type value = P.value let zero : value = P.Value.zero let rec eval : type a. path -> value array -> a Cse.node -> value = fun path values opcode -> match opcode with | Constant bv -> P.Value.constant bv | Value idx -> Array.get values idx | Variable var -> P.lookup path var | Unary (op, x) -> P.Value.unary op (eval path values x) | Binary (op, x, y) -> P.Value.binary op (eval path values x) (eval path values y) | Ite (c, t, e) -> P.Value.ite (eval path values c) (eval path values t) (eval path values e) | Load (base, addr, dir, len) -> P.read_v path base ~addr:(eval path values addr) len dir | Store (base, addr, dir, rval) -> let value = eval path values rval in P.store_v path base ~addr:(eval path values addr) value dir; value | Assign (var, rval) -> P.assign_v path var (eval path values rval); P.lookup path var | Clobber var -> P.clobber path var; P.lookup path var | Symbolize var -> P.symbolize path var; P.lookup path var end type 'a t = { x : (module EVAL with type path = 'a); mutable env : Cse.Env.t; seq : 'a Straight.t; } let empty : type a. (module PATH with type t = a) -> a t = fun path -> { x = (module X ((val path))); env = Cse.Env.empty; seq = Straight.empty path; } let assign : 'a t -> Dba.Var.t -> Dba.Expr.t -> unit = fun state var rval -> state.env <- Cse.Env.assign var rval state.env let clobber : 'a t -> Dba.Var.t -> unit = fun state var -> state.env <- Cse.Env.clobber var state.env let symbolize : 'a t -> Dba.Var.t -> unit = fun state var -> state.env <- Cse.Env.symbolize var state.env let forget : 'a t -> Dba.Var.t -> unit = fun state var -> state.env <- Cse.Env.forget var state.env let load : 'a t -> Dba.Var.t -> string option -> Machine.endianness -> Dba.Expr.t -> unit = fun state var base dir addr -> state.env <- Cse.Env.load var base dir addr state.env let store : 'a t -> string option -> Machine.endianness -> addr:Dba.Expr.t -> Dba.Expr.t -> unit = fun state base dir ~addr rval -> state.env <- Cse.Env.store base dir ~addr rval state.env let exec : type a. (module EVAL with type path = a) -> Cse.opcode array -> a -> unit = fun x opcodes path -> let module E = (val x) in let values = Array.make (Array.length opcodes) E.zero in (* Logger.info "> start"; *) Array.iteri (fun i opcode -> (* Logger.info "+ %a" Cse.pp_opcode opcode; *) Array.set values i (E.eval path values opcode)) opcodes let flush : ?input:Var.Set.t -> ?output:Var.Set.t -> 'a t -> unit = fun ?input ?output state -> if not (Cse.Env.is_empty state.env) then match (input, output) with | Some input, Some output -> let env, opcodes = Cse.partial_commit state.env (Var.Set.union input output) in state.env <- Var.Set.fold Cse.Env.forget output env; if Array.length opcodes <> 0 then Straight.apply state.seq (exec state.x opcodes) | None, _ | _, None -> Straight.apply state.seq (exec state.x (Cse.commit state.env)); state.env <- Cse.Env.empty let assume : 'a t -> Dba.Expr.t -> unit = fun state test -> flush ~input:(Dba_types.Expr.collect_variables test Var.Set.empty) ~output:Var.Set.empty state; Straight.assume state.seq test let check : 'a t -> Dba.Expr.t -> unit = fun state test -> flush ~input:(Dba_types.Expr.collect_variables test Var.Set.empty) ~output:Var.Set.empty state; Straight.check state.seq test let apply : 'a t -> ?input:Var.Set.t -> ?output:Var.Set.t -> ('a -> unit) -> unit = fun state ?input ?output f -> flush ?input ?output state; Straight.apply state.seq ?input ?output f let commit : 'a t -> pred:'a fiber -> 'a fiber = fun state ~pred -> flush state; Straight.commit state.seq ~pred end type 'a cache = 'a fiber IntTbl.t type 'a t = { config : 'a config; graph : Ir.View.t; killset : Ir.View.vertex -> Dba_types.Var.Set.t; fibers : 'a cache; } let rec forward : 'a t -> Ir.View.vertex -> Ir.View.vertex = fun ({ graph; killset; _ } as env) vertex -> match Ir.View.node graph vertex with | Fallthrough { kind = Nop | Forget _; succ; _ } | Fallthrough { kind = Goto _; succ; _ } -> forward env succ | Fallthrough { kind = Assign { var; _ } | Clobber var | Load { var; _ } | Symbolize var; succ; _; } when Var.Set.mem var (killset succ) -> forward env succ | _ -> vertex let link : 'a t -> Ir.View.vertex Queue.t -> ('a fiber * bool * int) Queue.t -> 'a fiber -> bool -> Ir.View.vertex -> unit = fun env todo reloc pred taken vertex -> let vertex = forward env vertex in try relink ~taken ~pred (IntTbl.find env.fibers vertex) with Not_found -> Queue.push vertex todo; Queue.push (pred, taken, vertex) reloc let echo : 'a config -> string -> pred:'a fiber -> 'a fiber = fun { echo; _ } msg ~pred -> let debug : 'a fiber = Apply { f = (fun path -> echo path msg); succ = invalid_successor } in relink ~pred debug; debug let decorate_fallthrough : 'a config -> Ir.fallthrough -> pred:'a fiber -> 'a fiber = fun ({ debug; annotation_printer; _ } as config) kind ~pred -> match (debug, kind) with | No, _ -> pred | (Assembly | Ir), Instruction inst -> echo config (match annotation_printer with | Some pp -> Format.asprintf "%a %-25s%a" Virtual_address.pp (Instruction.address inst) (Mnemonic.to_string (Instruction.mnemonic inst)) pp (Instruction.address inst) | None -> Format.asprintf "%a %a" Virtual_address.pp (Instruction.address inst) Mnemonic.pp (Instruction.mnemonic inst)) ~pred | (Assembly | Ir), Hook { addr; info } -> echo config (match annotation_printer with | Some pp -> Format.asprintf "%a %-25s%a" Virtual_address.pp addr info pp addr | None -> Format.asprintf "%a %s" Virtual_address.pp addr info) ~pred | Assembly, _ -> pred | Ir, _ -> echo config (Format.asprintf "%a" Ir.pp_opcode kind) ~pred let decorate_node : 'a config -> Ir.node -> pred:'a fiber -> 'a fiber = fun ({ debug; _ } as config) node ~pred -> match (debug, node) with | _, Fallthrough { kind; _ } -> decorate_fallthrough config kind ~pred | Ir, _ -> echo config (Format.asprintf "%a" Ir.pp_node node) ~pred | (Assembly | No), _ -> pred let commit_addr : 'a config -> Virtual_address.t -> int -> pred:'a fiber -> 'a fiber = fun { echo; debug; _ } addr n ~pred -> if n = 0 then pred else let step = Step { addr; n; succ = invalid_successor } in relink ~pred (match debug with | Ir -> let decoration = Format.sprintf "step %d" n in Apply { f = (fun path -> echo path decoration); succ = step } | Assembly | No -> step); step module X (As : ASSEMBLER) = struct type 'a state = 'a As.t let commit : 'a t -> 'a state -> Virtual_address.t -> int -> Ir.View.vertex -> pred:'a fiber -> 'a fiber = fun { config; killset; _ } state addr n vertex ~pred -> Var.Set.iter (fun var -> As.forget state var) (killset vertex); As.commit state ~pred:(commit_addr config addr n ~pred) type continuation = | Continue | Shift of Virtual_address.t * int | Builtin of Ir.builtin | Skip let step : 'a t -> 'a state -> Virtual_address.t -> int -> Ir.fallthrough -> Ir.View.vertex -> continuation = fun { config; killset; _ } state addr n kind succ -> match kind with | Nop | Goto _ -> Skip | Forget var -> As.forget state var; Skip | Instruction inst -> Shift (Instruction.address inst, n + 1) | Hook { addr; _ } -> As.apply ~input:Var.Set.empty ~output:Var.Set.empty state (fun path -> config.step path addr n); Shift (addr, 0) | (Assign { var; _ } | Clobber var | Load { var; _ } | Symbolize var) when Var.Set.mem var (killset succ) -> Skip | Assign { var; rval } -> As.assign state var rval; Continue | Clobber var -> As.clobber state var; Continue | Symbolize var -> As.symbolize state var; Continue | Load { var; base; dir; addr = ptr } -> As.load state var base dir ptr; Continue | Store { base; dir; addr = ptr; rval } -> As.store state base dir ~addr:ptr rval; Continue | Assume test | Assert test -> if n > 0 then As.apply ~input:Var.Set.empty ~output:Var.Set.empty state (fun path -> config.step path addr n); (match kind with Assume _ -> As.assume | _ -> As.check) state test; Shift (addr, 0) | Builtin builtin -> Builtin builtin let rec line : 'a t -> Ir.View.vertex Queue.t -> ('a fiber * bool * Ir.View.vertex) Queue.t -> 'a state -> Virtual_address.t -> int -> Ir.View.vertex -> pred:'a fiber -> unit = fun ({ graph; fibers; _ } as env) todo reloc state addr n vertex ~pred -> match IntTbl.find fibers vertex with | fiber -> relink ~pred:(commit env state addr n vertex ~pred) fiber | exception Not_found -> ( match Ir.View.pred graph vertex with | _ :: _ :: _ -> Queue.push vertex todo; Queue.push (commit env state addr n vertex ~pred, false, vertex) reloc | _ -> baseline env todo reloc state addr n vertex ~pred) and baseline : 'a t -> Ir.View.vertex Queue.t -> ('a fiber * bool * Ir.View.vertex) Queue.t -> 'a state -> Virtual_address.t -> int -> Ir.View.vertex -> pred:'a fiber -> unit = fun ({ config; graph; fibers; _ } as env) todo reloc state addr n vertex ~pred -> let node = Ir.View.node graph vertex in match node with | Terminator _ -> relink ~pred: (decorate_node config node ~pred:(commit env state addr n vertex ~pred)) (node_to_raw_fiber config.builtin_callbacks node) | Branch { test; target; fallthrough; _ } -> let branch = Branch { test; taken = invalid_successor; fallthrough = invalid_successor } in relink ~pred: (decorate_node config node ~pred:(commit env state addr n vertex ~pred)) branch; link env todo reloc branch true target; link env todo reloc branch false fallthrough | Fallthrough { kind; succ; _ } -> ( match step env state addr n kind succ with | Skip -> line env todo reloc state addr n succ ~pred | Continue -> line env todo reloc state addr n succ ~pred:(decorate_fallthrough config kind ~pred) | Shift (addr, n) -> line env todo reloc state addr n succ ~pred:(decorate_fallthrough config kind ~pred) | Builtin builtin -> ( match resolve_builtin config builtin with | Unknown -> let msg = Format.asprintf "no handler for %a" Ir.pp_builtin builtin in relink ~pred: (decorate_fallthrough config kind ~pred:(commit env state addr n vertex ~pred)) (Tail_call (fun _ -> Signal (Error msg))) | Apply f -> if n > 0 then As.apply ~input:Var.Set.empty ~output:Var.Set.empty state (fun path -> config.step path addr n); As.apply ?input:(resolve_knowledge builtin config.may_read_callbacks) ?output:(resolve_knowledge builtin config.may_write_callbacks) state f; line env todo reloc state addr 0 succ ~pred:(decorate_fallthrough config kind ~pred) | Call f -> let pred = commit env state addr n vertex ~pred and call : 'a fiber = Call { f; succ = invalid_successor } in let head = decorate_fallthrough config kind ~pred in relink ~pred:head call; IntTbl.add fibers vertex (if head == pred then call else head); line env todo reloc (As.empty config.path) addr 0 succ ~pred:call)) end let assemble : type a. a t -> int Queue.t -> (a fiber * bool * int) Queue.t -> a fiber -> Ir.View.vertex -> unit = fun ({ config = { path; assembler; _ }; _ } as env) todo reloc pred vertex -> let module As = (val assembler : ASSEMBLER) in let module X = X (As) in X.baseline env todo reloc (As.empty path) Virtual_address.zero 0 vertex ~pred let rec closure : 'a t -> int Queue.t -> ('a fiber * bool * int) Queue.t -> unit = fun ({ fibers; _ } as env) todo reloc -> if Queue.is_empty todo then Queue.iter (fun (pred, taken, target) -> relink ~taken ~pred (IntTbl.find fibers (forward env target))) reloc else let vertex = Queue.pop todo in let vertex = forward env vertex in if IntTbl.mem fibers vertex then closure env todo reloc; let placeholder : ([ `Assume ], 'a) Types.fiber = Assume { test = Dba.Expr.one; succ = invalid_successor } in assemble env todo reloc (match placeholder with Assume _ as head -> head) vertex; let (Assume { succ; _ }) = placeholder in IntTbl.add fibers vertex succ; closure env todo reloc let create : 'a config -> ?killset:(Ir.View.vertex -> Var.Set.t) -> ?fibers:'a cache -> Ir.View.t -> 'a t = fun ({ may_read_callbacks; _ } as config) ?killset ?fibers graph -> let killset = match killset with | Some f -> f | None -> let set = IntTbl.create (Ir.View.nb_vertex graph) in Ir.Killset.analyze ~may_read:(fun builtin -> resolve_knowledge builtin may_read_callbacks) ~must_write:(Fun.const Var.Set.empty) graph set; IntTbl.find set and fibers = match fibers with Some cache -> cache | None -> IntTbl.create 16 in { config; graph; killset; fibers } let get : 'a t -> Ir.View.vertex -> 'a fiber = fun ({ fibers; _ } as env) vertex -> let vertex = forward env vertex in try IntTbl.find fibers vertex with Not_found -> let todo = Queue.create () in Queue.add vertex todo; closure env todo (Queue.create ()); IntTbl.find fibers vertex
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>