package bignum
Install
dune-project
Dependency
Authors
Maintainers
Sources
sha256=ba5098820838176418faa6aa2e7be3bfb4d9d03f46c2ed432b3d19a3de307dcd
md5=3bd6804528eaf6e1c6262bbd991c886d
doc/bignum.bigint/Bigint/index.html
Module Bigint
gen produces integers representable within Quickcheck.size bytes, with a random sign.
include Core_kernel.Int_intf.S_unbounded with type t := t
include Core_kernel.Int_intf.Extension with type t := t
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
include Typerep_lib.Typerepable.S with type t := t
val typerep_of_t : t Typerep_lib.Std_internal.Typerep.tval typename_of_t : t Typerep_lib.Typename.tinclude Core_kernel.Int_intf.Hexable with type t := t
module Hex : sig ... endinclude Core_kernel.Identifiable.S with type t := t
include Bin_prot.Binable.S with type t := t
include Bin_prot.Binable.S_only_functions with type t := t
val bin_size_t : t Bin_prot.Size.sizerval bin_write_t : t Bin_prot.Write.writerval bin_read_t : t Bin_prot.Read.readerval __bin_read_t__ : (int -> t) Bin_prot.Read.readerThis function only needs implementation if t exposed to be a polymorphic variant. Despite what the type reads, this does *not* produce a function after reading; instead it takes the constructor tag (int) before reading and reads the rest of the variant t afterwards.
val bin_shape_t : Bin_prot.Shape.tval bin_writer_t : t Bin_prot.Type_class.writerval bin_reader_t : t Bin_prot.Type_class.readerval bin_t : t Bin_prot.Type_class.tinclude Ppx_sexp_conv_lib.Sexpable.S with type t := t
include Core_kernel.Identifiable.S_common with type t := t
include Base.Stringable.S with type t := t
include Base.Pretty_printer.S with type t := t
include Core_kernel.Comparable.S_binable with type t := t
include Base.Comparable.S with type t := t
include Base.Comparisons.S with type t := t
include Base.Comparisons.Infix with type t := t
include Base.Comparator.S with type t := t
module Replace_polymorphic_compare :
Base.Comparable.Polymorphic_compare with type t := tinclude Core_kernel.Comparator.S
with type t := t
with type comparator_witness := comparator_witness
module Map :
Core_kernel.Map.S_binable
with type Key.t = t
with type Key.comparator_witness = comparator_witnessmodule Set :
Core_kernel.Set.S_binable
with type Elt.t = t
with type Elt.comparator_witness = comparator_witnessinclude Core_kernel.Hashable.S_binable with type t := t
val hashable : t Base.Hashable.tmodule Table : Core_kernel.Hashtbl.S_binable with type key = tmodule Hash_set : Core_kernel.Hash_set.S_binable with type elt = tmodule Hash_queue : Core_kernel.Hash_queue.S with type Key.t = tinclude Core_kernel.Quickcheckable.S_int with type t := t
include Core_kernel.Quickcheck_intf.S with type t := t
val quickcheck_generator : t Base_quickcheck.Generator.tval quickcheck_observer : t Base_quickcheck.Observer.tval quickcheck_shrinker : t Base_quickcheck.Shrinker.tval gen_incl : t -> t -> t Base_quickcheck.Generator.tgen_incl lower_bound upper_bound produces values between lower_bound and upper_bound, inclusive. It uses an ad hoc distribution that stresses boundary conditions more often than a uniform distribution, while still able to produce any value in the range. Raises if lower_bound > upper_bound.
val gen_uniform_incl : t -> t -> t Base_quickcheck.Generator.tgen_uniform_incl lower_bound upper_bound produces a generator for values uniformly distributed between lower_bound and upper_bound, inclusive. Raises if lower_bound > upper_bound.
val gen_log_uniform_incl : t -> t -> t Base_quickcheck.Generator.tgen_log_uniform_incl lower_bound upper_bound produces a generator for values between lower_bound and upper_bound, inclusive, where the number of bits used to represent the value is uniformly distributed. Raises if (lower_bound < 0) || (lower_bound > upper_bound).
val gen_log_incl : t -> t -> t Base_quickcheck.Generator.tgen_log_incl lower_bound upper_bound is like gen_log_uniform_incl, but weighted slightly more in favor of generating lower_bound and upper_bound specifically.
include Base.Int.S_unbounded
with type t := t
with type comparator_witness := comparator_witness
with module Hex := Hex
include Base.Sexpable.S with type t := t
include Base.Identifiable.S
with type t := t
with type comparator_witness := comparator_witness
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.stateval hash : t -> Base.Hash.hash_valueinclude Base.Sexpable.S with type t := t
val t_of_sexp : Base.Sexp.t -> tval sexp_of_t : t -> Base.Sexp.tinclude Base.Comparable.S
with type t := t
with type comparator_witness := comparator_witness
include Base.Comparisons.S with type t := t
compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.
ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.
clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.
Raises if not (min <= max).
val clamp : t -> min:t -> max:t -> t Base.Or_error.tinclude Base.Comparator.S
with type t := t
with type comparator_witness := comparator_witness
val comparator : (t, comparator_witness) Base.Comparator.comparatorval validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.checkval validate_bound :
min:t Base.Maybe_bound.t ->
max:t Base.Maybe_bound.t ->
t Base.Validate.checkinclude Base.Pretty_printer.S with type t := t
val pp : Base.Formatter.t -> t -> unitinclude Base.Comparable.With_zero with type t := t
val validate_positive : t Base.Validate.checkval validate_non_negative : t Base.Validate.checkval validate_negative : t Base.Validate.checkval validate_non_positive : t Base.Validate.checkval is_positive : t -> boolval is_non_negative : t -> boolval is_negative : t -> boolval is_non_positive : t -> boolval sign : t -> Base__.Sign0.tReturns Neg, Zero, or Pos in a way consistent with the above functions.
val to_string_hum : ?delimiter:char -> t -> stringdelimiter is an underscore by default.
Infix operators and constants
val zero : tval one : tval minus_one : tNegation
There are two pairs of integer division and remainder functions, /% and %, and / and rem. They both satisfy the same equation relating the quotient and the remainder:
x = (x /% y) * y + (x % y);
x = (x / y) * y + (rem x y);The functions return the same values if x and y are positive. They all raise if y = 0.
The functions differ if x < 0 or y < 0.
If y < 0, then % and /% raise, whereas / and rem do not.
x % y always returns a value between 0 and y - 1, even when x < 0. On the other hand, rem x y returns a negative value if and only if x < 0; that value satisfies abs (rem x y) <= abs y - 1.
Other common functions
round rounds an int to a multiple of a given to_multiple_of argument, according to a direction dir, with default dir being `Nearest. round will raise if to_multiple_of <= 0.
| `Down | rounds toward Int.neg_infinity | | `Up | rounds toward Int.infinity | | `Nearest | rounds to the nearest multiple, or `Up in case of a tie | | `Zero | rounds toward zero |
Here are some examples for round ~to_multiple_of:10 for each direction:
| `Down | {10 .. 19} --> 10 | { 0 ... 9} --> 0 | {-10 ... -1} --> -10 |
| `Up | { 1 .. 10} --> 10 | {-9 ... 0} --> 0 | {-19 .. -10} --> -10 |
| `Zero | {10 .. 19} --> 10 | {-9 ... 9} --> 0 | {-19 .. -10} --> -10 |
| `Nearest | { 5 .. 14} --> 10 | {-5 ... 4} --> 0 | {-15 ... -6} --> -10 |For convenience and performance, there are variants of round with dir hard-coded. If you are writing performance-critical code you should use these.
Returns the absolute value of the argument. May be negative if the input is min_value.
Successor and predecessor functions
Exponentiation
pow base exponent returns base raised to the power of exponent. It is OK if base <= 0. pow raises if exponent < 0, or an integer overflow would occur.
Bit-wise logical operations
These are identical to land, lor, etc. except they're not infix and have different names.
val popcount : t -> intReturns the number of 1 bits in the binary representation of the input.
Bit-shifting operations
The results are unspecified for negative shifts and shifts >= num_bits.
Increment and decrement functions for integer references
Conversion functions to related integer types
val of_int32_exn : int32 -> tval to_int32_exn : t -> int32val of_int64_exn : int64 -> tval of_nativeint_exn : nativeint -> tval to_nativeint_exn : t -> nativeintval of_float_unchecked : float -> tof_float_unchecked truncates the given floating point number to an integer, rounding towards zero. The result is unspecified if the argument is nan or falls outside the range of representable integers.
module O : sig ... endA sub-module designed to be opened to make working with ints more convenient.
val to_int64_exn : t -> Core_kernel.Int64.tval to_int : t -> int optionval to_int32 : t -> Core_kernel.Int32.t optionval to_int64 : t -> Core_kernel.Int64.t optionval to_nativeint : t -> nativeint optionval of_int : int -> tval of_int32 : Core_kernel.Int32.t -> tval of_int64 : Core_kernel.Int64.t -> tval of_nativeint : nativeint -> tval to_zarith_bigint : t -> Bigint__.Zarith.Z.tval of_zarith_bigint : Bigint__.Zarith.Z.t -> tval random : ?state:Core_kernel.Random.State.t -> t -> trandom t produces a value uniformly distributed between zero (inclusive) and t (exclusive), or raises if t <= zero.
val gen_positive : t Core_kernel.Quickcheck.Generator.tval gen_negative : t Core_kernel.Quickcheck.Generator.tmodule Stable : sig ... end