package baby
Fast sets based on balanced binary search trees
Install
dune-project
Dependency
Authors
Maintainers
Sources
20241204.tar.gz
md5=2f74310d5ed0396592c92982a9181f17
sha512=927eab8e31f05427b54732b80fe81431606a720979dbc6a67ed1bf42e3581a6d76580440bee0835fac8342e8b1407f685ee5ca6d1f78b5e0e576344525f4e525
doc/baby/Baby/W/Set/Make/argument-1-E/index.html
Parameter Make.E
The function compare
decides a relation \leq
over elements of type t
.
The relation \leq
must be a total preorder: that is,
- for all elements
x, y
, it must be the case thatx \leq y
ory \leq x
holds. - for all elements
x, y, z
, it must be the case thatx \leq y
andy \leq z
implyx \leq z
;
Let us write x \equiv y
when x \leq y
and y \leq x
hold. In that case, we say that x
and y
are equivalent.
Let us write x < y
when x \leq y
and \neg (y \leq x)
hold.
compare
must behave as follows:
- if
x \equiv y
holds thencompare x y
must be zero; - if
x < y
holds thencompare x y
must be negative; - if
y < x
holds thencompare x y
must be positive.
If equivalence implies equality (that is, if for all elements x, y
, x \equiv y
implies x = y
) then we say that the relation \leq
is a total order.
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>