Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
kex.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
(* * Copyright (c) 2017 Christiano F. Haesbaert <haesbaert@haesbaert.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) open Util open Ssh type compression_alg = | Nothing (* Can't use None :-D *) let compression_alg_of_string = function | "none" -> Ok Nothing | s -> Error ("Unknown compression algorithm " ^ s) let compression_alg_to_string = function | Nothing -> "none" type alg = | Diffie_hellman_group_exchange_sha256 | Diffie_hellman_group14_sha256 | Diffie_hellman_group14_sha1 | Diffie_hellman_group1_sha1 | Diffie_hellman_group_exchange_sha1 | Curve25519_sha256 | Ecdh_sha2_nistp256 | Ecdh_sha2_nistp384 | Ecdh_sha2_nistp521 let is_rfc4419 = function | Diffie_hellman_group_exchange_sha256 | Diffie_hellman_group_exchange_sha1 -> true | Diffie_hellman_group14_sha256 | Diffie_hellman_group14_sha1 | Diffie_hellman_group1_sha1 | Curve25519_sha256 | Ecdh_sha2_nistp256 | Ecdh_sha2_nistp384 | Ecdh_sha2_nistp521 -> false let is_finite_field = function | Diffie_hellman_group_exchange_sha256 | Diffie_hellman_group_exchange_sha1 | Diffie_hellman_group14_sha256 | Diffie_hellman_group14_sha1 | Diffie_hellman_group1_sha1 -> true | Curve25519_sha256 | Ecdh_sha2_nistp256 | Ecdh_sha2_nistp384 | Ecdh_sha2_nistp521 -> false let alg_of_string = function | "diffie-hellman-group-exchange-sha256" -> Ok Diffie_hellman_group_exchange_sha256 | "diffie-hellman-group-exchange-sha1" -> Ok Diffie_hellman_group_exchange_sha1 | "diffie-hellman-group14-sha256" -> Ok Diffie_hellman_group14_sha256 | "diffie-hellman-group14-sha1" -> Ok Diffie_hellman_group14_sha1 | "diffie-hellman-group1-sha1" -> Ok Diffie_hellman_group1_sha1 | "curve25519-sha256" -> Ok Curve25519_sha256 | "ecdh-sha2-nistp256" -> Ok Ecdh_sha2_nistp256 | "ecdh-sha2-nistp384" -> Ok Ecdh_sha2_nistp384 | "ecdh-sha2-nistp521" -> Ok Ecdh_sha2_nistp521 | s -> Error ("Unknown kex_alg " ^ s) let alg_to_string = function | Diffie_hellman_group_exchange_sha256 -> "diffie-hellman-group-exchange-sha256" | Diffie_hellman_group_exchange_sha1 -> "diffie-hellman-group-exchange-sha1" | Diffie_hellman_group14_sha256 -> "diffie-hellman-group14-sha256" | Diffie_hellman_group14_sha1 -> "diffie-hellman-group14-sha1" | Diffie_hellman_group1_sha1 -> "diffie-hellman-group1-sha1" | Curve25519_sha256 -> "curve25519-sha256" | Ecdh_sha2_nistp256 -> "ecdh-sha2-nistp256" | Ecdh_sha2_nistp384 -> "ecdh-sha2-nistp384" | Ecdh_sha2_nistp521 -> "ecdh-sha2-nistp521" let group_of_alg = function | Diffie_hellman_group14_sha256 -> Mirage_crypto_pk.Dh.Group.oakley_14 | Diffie_hellman_group14_sha1 -> Mirage_crypto_pk.Dh.Group.oakley_14 | Diffie_hellman_group1_sha1 -> Mirage_crypto_pk.Dh.Group.oakley_2 | Diffie_hellman_group_exchange_sha1 | Diffie_hellman_group_exchange_sha256 | Curve25519_sha256 | Ecdh_sha2_nistp256 | Ecdh_sha2_nistp384 | Ecdh_sha2_nistp521 -> assert false let hash_of_alg = function | Diffie_hellman_group_exchange_sha256 | Diffie_hellman_group14_sha256 | Curve25519_sha256 -> Digestif.module_of_hash' `SHA256 | Diffie_hellman_group_exchange_sha1 | Diffie_hellman_group14_sha1 | Diffie_hellman_group1_sha1 -> Digestif.module_of_hash' `SHA1 | Ecdh_sha2_nistp256 -> Digestif.module_of_hash' `SHA256 | Ecdh_sha2_nistp384 -> Digestif.module_of_hash' `SHA384 | Ecdh_sha2_nistp521 -> Digestif.module_of_hash' `SHA512 let supported = [ Curve25519_sha256 ; Ecdh_sha2_nistp256 ; Ecdh_sha2_nistp384 ; Ecdh_sha2_nistp521 ; Diffie_hellman_group14_sha256 ; Diffie_hellman_group_exchange_sha256 ; Diffie_hellman_group14_sha1 ; Diffie_hellman_group1_sha1 ; Diffie_hellman_group_exchange_sha1 ] let make_kexinit ?ext_info host_key_algs algs () = let k = { cookie = Cstruct.of_string (Mirage_crypto_rng.generate 16); kex_algs = List.map alg_to_string algs; ext_info; server_host_key_algs = List.map Hostkey.alg_to_string host_key_algs; encryption_algs_ctos = List.map Cipher.to_string Cipher.preferred; encryption_algs_stoc = List.map Cipher.to_string Cipher.preferred; mac_algs_ctos = List.map Hmac.to_string Hmac.preferred; mac_algs_stoc = List.map Hmac.to_string Hmac.preferred; compression_algs_ctos = [ "none" ]; compression_algs_stoc = [ "none" ]; languages_ctos = []; languages_stoc = []; first_kex_packet_follows = false; rawkex = Cstruct.create 0 } in (* Patch k with rawkex, for completion sake *) { k with rawkex = Wire.blob_of_kexinit k } type negotiation = { kex_alg : alg; server_host_key_alg : Hostkey.alg; encryption_alg_ctos : Cipher.t; encryption_alg_stoc : Cipher.t; mac_alg_ctos : Hmac.t; mac_alg_stoc : Hmac.t; compression_alg_ctos : compression_alg; compression_alg_stoc : compression_alg; } let pp_negotiation ppf neg = Format.fprintf ppf "kex %s host key alg %s@.enc ctos %s stoc %s@.mac ctos %s stoc %s@.compression ctos %s stoc %s" (alg_to_string neg.kex_alg) (Hostkey.alg_to_string neg.server_host_key_alg) (Cipher.to_string neg.encryption_alg_ctos) (Cipher.to_string neg.encryption_alg_stoc) (Hmac.to_string neg.mac_alg_ctos) (Hmac.to_string neg.mac_alg_stoc) (compression_alg_to_string neg.compression_alg_ctos) (compression_alg_to_string neg.compression_alg_stoc) let guessed_right ~s ~c = let compare_hd a b = match (a, b) with | [], [] -> true | [], _ -> false | _, [] -> false | x :: _, y :: _ -> x = y in compare_hd s.kex_algs c.kex_algs && compare_hd s.server_host_key_algs c.server_host_key_algs && compare_hd s.encryption_algs_ctos c.encryption_algs_ctos && compare_hd s.encryption_algs_stoc c.encryption_algs_stoc && compare_hd s.mac_algs_ctos c.mac_algs_ctos && compare_hd s.mac_algs_stoc c.mac_algs_stoc && compare_hd s.compression_algs_ctos c.compression_algs_ctos && compare_hd s.compression_algs_stoc c.compression_algs_stoc (* negotiate / pick_common should prefer _ours_ over _theirs_ (well, the client decides ultimately (by sending the next message), no?) *) let negotiate ~s ~c = let pick_common f ~s ~c e = try f (List.find (fun x -> List.mem x s) c) with Not_found -> Error e in let* kex_alg = pick_common alg_of_string ~s:s.kex_algs ~c:c.kex_algs "Can't agree on kex algorithm" in let* server_host_key_alg = pick_common Hostkey.alg_of_string ~s:s.server_host_key_algs ~c:c.server_host_key_algs "Can't agree on server host key algorithm" in let* encryption_alg_ctos = pick_common Cipher.of_string ~s:s.encryption_algs_ctos ~c:c.encryption_algs_ctos "Can't agree on encryption algorithm client to server" in let* encryption_alg_stoc = pick_common Cipher.of_string ~s:s.encryption_algs_stoc ~c:c.encryption_algs_stoc "Can't agree on encryption algorithm server to client" in let* mac_alg_ctos = if Cipher.aead encryption_alg_ctos then Ok Hmac.Plaintext else pick_common Hmac.of_string ~s:s.mac_algs_ctos ~c:c.mac_algs_ctos "Can't agree on mac algorithm client to server" in let* mac_alg_stoc = if Cipher.aead encryption_alg_stoc then Ok Hmac.Plaintext else pick_common Hmac.of_string ~s:s.mac_algs_stoc ~c:c.mac_algs_stoc "Can't agree on mac algorithm server to client" in let* compression_alg_ctos = pick_common compression_alg_of_string ~s:s.compression_algs_ctos ~c:c.compression_algs_ctos "Can't agree on compression algorithm client to server" in let* compression_alg_stoc = pick_common compression_alg_of_string ~s:s.compression_algs_stoc ~c:c.compression_algs_stoc "Can't agree on compression algorithm server to client" in (* XXX make sure it's not plaintext here *) Ok { kex_alg; server_host_key_alg; encryption_alg_ctos; encryption_alg_stoc; mac_alg_ctos; mac_alg_stoc; compression_alg_ctos; compression_alg_stoc } (* ignore language_ctos and language_stoc *) type keys = { cipher : Cipher.key; (* Encryption key *) mac : Hmac.key; (* Integrity key *) seq : int32; (* Sequence number *) tx_rx : int64; (* Transmitted or Received bytes with this key *) } let make_plaintext () = { cipher = Cipher.{ cipher = Plaintext; cipher_key = Plaintext_key }; mac = Hmac.{ hmac = Plaintext; key = "" }; seq = Int32.zero ; tx_rx = Int64.zero } let is_plaintext keys = let cipher = keys.cipher.Cipher.cipher in let hmac = keys.mac.Hmac.hmac in match cipher, hmac with | Cipher.Plaintext, Hmac.Plaintext -> true | Cipher.Plaintext, _ -> invalid_arg "Cipher is plaintext, abort at all costs!" | cipher_alg, Hmac.Plaintext -> (* with AEAD it's ok to have Hmac.Plaintext, see func negotiate *) if Cipher.aead cipher_alg then false else invalid_arg "Cipher is not AEAD and Hmac is plaintext, abort at all costs!" | _, _ -> false let is_keyed keys = not (is_plaintext keys) (* For how many bytes is this key good ? (in bytes) *) let one_GB = 1000000000L let one_minute_ns = 60000000000L (* How long should we use the same key ? (in ns) *) let keys_lifespan = Int64.mul 60L one_minute_ns |> Mtime.Span.of_uint64_ns let should_rekey tx eol now = (* If we overflow signed 64bit, something is really wrong *) assert (tx >= Int64.zero); let expired = Mtime.is_later now ~than:eol in (tx >= one_GB || expired) let derive_keys digesti k h session_id neg now = let cipher_ctos = neg.encryption_alg_ctos in let cipher_stoc = neg.encryption_alg_stoc in let mac_ctos = neg.mac_alg_ctos in let mac_stoc = neg.mac_alg_stoc in let k = Cstruct.to_string (Wire.(Dbuf.to_cstruct @@ put_mpint k (Dbuf.create ()))) in let hash ch need = let rec expand kn = if String.length kn >= need then kn else let kn' = digesti (fun f -> List.iter f [k; h; kn]) in expand (kn ^ kn') in let x = String.make 1 ch in let k1 = digesti (fun f -> List.iter f [k; h; x; session_id]) in String.sub (expand k1) 0 need in let key_of cipher iv secret = let open Mirage_crypto in let open Cipher in match cipher with | Plaintext -> invalid_arg "Deriving plaintext, abort at all costs" | Aes128_ctr | Aes192_ctr | Aes256_ctr -> let iv = AES.CTR.ctr_of_octets iv in { cipher; cipher_key = Aes_ctr_key ((AES.CTR.of_secret secret), iv) } | Aes128_cbc | Aes192_cbc | Aes256_cbc -> { cipher; cipher_key = Aes_cbc_key ((AES.CBC.of_secret secret), iv) } | Chacha20_poly1305 -> assert (String.length secret = 64); let d, l = String.sub secret 0 32, String.sub secret 32 32 in let lkey = Mirage_crypto.Chacha20.of_secret l and key = Mirage_crypto.Chacha20.of_secret d in { cipher; cipher_key = Chacha20_poly1305_key (lkey, key) } in (* Build new keys_ctos keys *) let ctos_iv = hash 'A' (Cipher.iv_len cipher_ctos) in let ctos = { cipher = hash 'C' (Cipher.key_len cipher_ctos) |> key_of cipher_ctos ctos_iv; mac = Hmac.{ hmac = mac_ctos; key = hash 'E' (key_len mac_ctos) }; seq = Int32.zero; tx_rx = Int64.zero } in (* Build new stoc keys *) let stoc_iv = hash 'B' (Cipher.iv_len cipher_stoc) in let stoc = { cipher = hash 'D' (Cipher.key_len cipher_stoc) |> key_of cipher_stoc stoc_iv; mac = Hmac.{ hmac = mac_stoc; key = hash 'F' (key_len mac_stoc) }; seq = Int32.zero; tx_rx = Int64.zero } in let* eol = guard_some (Mtime.add_span now keys_lifespan) "key eol overflow" in Ok (ctos, stoc, eol) module Dh = struct let derive_keys k h session_id neg now = let (module H) = hash_of_alg neg.kex_alg in derive_keys (fun ds -> H.(to_raw_string (digesti_string ds))) k h session_id neg now let compute_hash ?(signed = false) neg ~v_c ~v_s ~i_c ~i_s ~k_s ~e ~f ~k = let (module H) = hash_of_alg neg.kex_alg in let open Wire in put_cstring (Cstruct.of_string v_c) (Dbuf.create ()) |> put_cstring (Cstruct.of_string v_s) |> put_cstring i_c |> put_cstring i_s |> put_cstring (Wire.blob_of_pubkey k_s) |> put_mpint ~signed e |> put_mpint ~signed f |> put_mpint k |> Dbuf.to_cstruct |> Cstruct.to_string |> H.digest_string |> H.to_raw_string let compute_hash_gex neg ~v_c ~v_s ~i_c ~i_s ~k_s ~min ~n ~max ~p ~g ~e ~f ~k = let (module H) = hash_of_alg neg.kex_alg in let open Wire in put_cstring (Cstruct.of_string v_c) (Dbuf.create ()) |> put_cstring (Cstruct.of_string v_s) |> put_cstring i_c |> put_cstring i_s |> put_cstring (Wire.blob_of_pubkey k_s) |> put_uint32 min |> put_uint32 n |> put_uint32 max |> put_mpint p |> put_mpint g |> put_mpint e |> put_mpint f |> put_mpint k |> Dbuf.to_cstruct |> Cstruct.to_string |> H.digest_string |> H.to_raw_string let secret_pub alg = let secret, pub = Mirage_crypto_pk.Dh.gen_key (group_of_alg alg) in secret, Mirage_crypto_pk.Z_extra.of_octets_be pub let secret recv = let r = Mirage_crypto_pk.Z_extra.to_octets_be recv in let* = guard_some (Mirage_crypto_pk.Dh.shared secret r) "Can't compute shared secret" in Ok (Mirage_crypto_pk.Z_extra.of_octets_be shared) let ec_secret_pub = function | Curve25519_sha256 -> let secret, pub = Mirage_crypto_ec.X25519.gen_key () in `Ed25519 secret, Mirage_crypto_pk.Z_extra.of_octets_be pub | Ecdh_sha2_nistp256 -> let secret, pub = Mirage_crypto_ec.P256.Dh.gen_key () in `P256 secret, Mirage_crypto_pk.Z_extra.of_octets_be pub | Ecdh_sha2_nistp384 -> let secret, pub = Mirage_crypto_ec.P384.Dh.gen_key () in `P384 secret, Mirage_crypto_pk.Z_extra.of_octets_be pub | Ecdh_sha2_nistp521 -> let secret, pub = Mirage_crypto_ec.P521.Dh.gen_key () in `P521 secret, Mirage_crypto_pk.Z_extra.of_octets_be pub | _ -> assert false let secret recv = let r = Mirage_crypto_pk.Z_extra.to_octets_be recv in let* = Result.map_error (Fmt.to_to_string Mirage_crypto_ec.pp_error) (match secret with | `Ed25519 secret -> Mirage_crypto_ec.X25519.key_exchange secret r | `P256 secret -> Mirage_crypto_ec.P256.Dh.key_exchange secret r | `P384 secret -> Mirage_crypto_ec.P384.Dh.key_exchange secret r | `P521 secret -> Mirage_crypto_ec.P521.Dh.key_exchange secret r) in Ok (Mirage_crypto_pk.Z_extra.of_octets_be shared) let generate alg peer_pub = let secret, my_pub = secret_pub alg in let* = shared secret peer_pub in (* my_pub is f or e, shared is k *) Ok (my_pub, shared) end