package alt-ergo-lib
Install
dune-project
Dependency
Authors
Maintainers
Sources
sha256=9cf8d69a0e457a939b86aba2a18c6154faba51d387b42a361ece55d329dd601d
sha512=09694d18496ba1938daaa7b4e28e6b3d6811687dd3aaede17917f20511be9d8328394fac021af683d4c0217d4b030da9a60a5b9c14d968f1948735ea7ec52543
doc/alt-ergo-lib/AltErgoLib/Typed/index.html
Module AltErgoLib.Typed
Typed AST
This module defines a typed AST, used to represent typed terms before they are hashconsed.
Annotations
val mk : ?annot:int -> 'a -> ('a, int) annotedCreate an annoted value with the given annotation. If no annotation is given, a fresh annotation is generated using new_id.
Terms and formulas
type tconstant = | Tint of string(*An integer constant.
*)| Treal of Numbers.Q.t(*Real constant.
*)| Tbitv of string(*Bitvector constant.
*)| Ttrue(*The true boolean (or proposition ?)
*)| Tfalse(*The false boolean
*)| Tvoid(*The only value of type unit
*)
Typed constants.
Typed terms. Polymorphic in the annotation: an 'a tterm is a term annoted with values of type 'a.
and 'a tt_desc = | TTconst of tconstant(*Term constant
*)| TTvar of Symbols.t(*Term variables
*)| TTinfix of 'a atterm * Symbols.t * 'a atterm(*Infix symbol application
*)| TTprefix of Symbols.t * 'a atterm(*Prefix symbol application
*)| TTapp of Symbols.t * 'a atterm list(*Arbitrary symbol application
*)| TTmapsTo of Var.t * 'a atterm(*Used in semantic triggers for floating point arithmetic. See sources/preludes/fpa-theory-2017-01-04-16h00.ae
*)| TTinInterval of 'a atterm * Symbols.bound * Symbols.bound(*Represent floating point intervals (used for triggers in Floating point arithmetic theory).
*)TTinInterval (lower, l_strict, t, upper, u_strict)is a constraint stating that termtis in the intervallower, upper, and that the lower (resp. upper) bound is strict iffl_strict(resp.u_strict) is true.| TTget of 'a atterm * 'a atterm(*Get operation on arrays
*)| TTset of 'a atterm * 'a atterm * 'a atterm(*Set operation on arrays
*)| TTextract of 'a atterm * int * int(*Extract a sub-bitvector
*)| TTconcat of 'a atterm * 'a atterm| TTdot of 'a atterm * Hstring.t(*Field access on structs/records
*)| TTrecord of (Hstring.t * 'a atterm) list(*Record creation.
*)| TTlet of (Symbols.t * 'a atterm) list * 'a atterm(*Let-bindings. Accept a list of mutually recursive le-bindings.
*)| TTnamed of Hstring.t * 'a atterm(*Attach a label to a term.
*)| TTite of 'a atform * 'a atterm * 'a atterm(*Conditional branching, of the form
*)TTite (condition, then_branch, else_branch).| TTproject of bool * 'a atterm * Hstring.t(*Field (conditional) access on ADTs. The boolean is true when the projection is 'guarded' and cannot be simplified (because functions are total)
*)| TTmatch of 'a atterm * (pattern * 'a atterm) list(*pattern matching on ADTs
*)| TTform of 'a atform(*formulas inside terms: simple way to add them without making a lot of changes
*)
Typed terms descriptors.
and 'a tatom = | TAtrue(*The
*)trueatom| TAfalse(*The
*)falseatom| TAeq of 'a atterm list(*Equality of a set of typed terms.
*)| TAdistinct of 'a atterm list(*Disequality. All terms in the set are pairwise distinct.
*)| TAneq of 'a atterm list(*Equality negation: at least two elements in the list are not equal.
*)| TAle of 'a atterm list(*Arithmetic ordering: lesser or equal. Chained on lists of terms.
*)| TAlt of 'a atterm list(*Strict arithmetic ordering: less than. Chained on lists of terms.
*)| TApred of 'a atterm * bool(*Term predicate, negated if the boolean is true.
*)TApred (t, negated)is satisfied ifft <=> not negated| TTisConstr of 'a atterm * Hstring.t(*Test if the given term's head symbol is identitical to the provided ADT consturctor
*)
Typed atoms.
and 'a quant_form = {qf_bvars : (Symbols.t * Ty.t) list;(*Variables that are quantified by this formula.
*)qf_upvars : (Symbols.t * Ty.t) list;(*Free variables that occur in the formula.
*)qf_triggers : ('a atterm list * bool) list;(*Triggers associated wiht the formula. For each trigger, the boolean specifies whether the trigger was given in the input file (compared to inferred).
*)qf_hyp : 'a atform list;(*Hypotheses of axioms with semantic triggers in FPA theory. Typically, these hypotheses reduce to TRUE after instantiation
*)qf_form : 'a atform;(*The quantified formula.
*)
}Quantified formulas.
and 'a tform = | TFatom of 'a atatom(*Atomic formula.
*)| TFop of oplogic * 'a atform list(*Application of logical operators.
*)| TFforall of 'a quant_form(*Universal quantification.
*)| TFexists of 'a quant_form(*Existencial quantification.
*)| TFlet of (Symbols.t * Ty.t) list * (Symbols.t * 'a tlet_kind) list * 'a atform(*Let binding. TODO: what is in the first list ?
*)| TFnamed of Hstring.t * 'a atform(*Attach a name to a formula.
*)| TFmatch of 'a atterm * (pattern * 'a atform) list(*pattern matching on ADTs
*)
Typed formulas.
Declarations
type 'a rwt_rule = {rwt_vars : (Symbols.t * Ty.t) list;(*Variables of the rewrite rule
*)rwt_left : 'a;(*Left side of the rewrite rule (aka pattern).
*)rwt_right : 'a;(*Right side of the rewrite rule.
*)
}Rewrite rules. Polymorphic to allow for different representation of terms.
Type declarations. Specifies the list of argument types, as well as the return type for functions (predicate implicitly returns a proposition, so there is no need for an explicit return type).
and 'a tdecl = | TTheory of Loc.t * string * Util.theories_extensions * 'a atdecl list(*Theory declarations. The list of declarations in a Theory may only contain Axioms.
*)| TAxiom of Loc.t * string * Util.axiom_kind * 'a atform(*New axiom that can be used in proofs.
*)| TRewriting of Loc.t * string * 'a atterm rwt_rule list(*New rewrite rule that can be used.
*)| TGoal of Loc.t * Ty.goal_sort * string * 'a atform(*New goal to prove.
*)| TLogic of Loc.t * string list * tlogic_type(*Function (or predicate) type declaration.
*)| TPredicate_def of Loc.t * string * (string * Ty.t) list * 'a atform(*Predicate definition.
*)TPredicate_def (loc, name, vars, body)defines a predicatefun vars => body.| TFunction_def of Loc.t * string * (string * Ty.t) list * Ty.t * 'a atform(*Predicate definition.
*)TPredicate_def (loc, name, vars, ret, body)defines a functionfun vars => body, where body has typeret.| TTypeDecl of Loc.t * Ty.t(*New type declaration.
*)TTypeDecl (loc, vars, t, body)declares a typet, with parametersvars, and with contentsbody. This new type may either be abstract, a record type, or an enumeration.| TPush of Loc.t * int(*
*)push (loc,n)pushs n new assertions levels onto the assertion stack| TPop of Loc.t * int(*
*)pop (loc,n)pops n assertions levels from the assertion stack
Typed declarations.
Printing
val print_term : Format.formatter -> _ atterm -> unitPrint annoted typed terms. Ignore the annotations.
val print_formula : Format.formatter -> _ atform -> unitPrint annoted typed formulas; Ignores the annotations.
val print_binders : Format.formatter -> (Symbols.t * Ty.t) list -> unitPrint a list of bound typed variables.
val print_triggers : Format.formatter -> ('a atterm list * bool) list -> unitPrint a list of triggers.
val print_rwt :
(Format.formatter -> 'a -> unit) ->
Format.formatter ->
'a rwt_rule ->
unitPrint a rewrite rule