package OCADml
Types and functions for building CAD packages in OCaml
Install
dune-project
Dependency
Authors
Maintainers
Sources
OCADml-0.4.1.tbz
sha256=d12ea5331bb8b0b25ca3f7e422549897d19b02d27a8d4dc0e73e610ed39004de
sha512=316783fd40d16d0a40e747d93834dcf62cdfc71ab8081fbc874ddf8e6c4e807134ac3cb7e145b21845490f9238d8e431d007cc7fbe2e6f0414a0976db6d82c04
doc/src/OCADml/path3.ml.html
Source file path3.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
open V include Path.Make (V3) include PathSearch.Make (V3) (BallTree3) (PathSearch.TangentSign3) include Arc3 include Rounding.Make (V3) (Arc3) module Bez2 = Bezier.Make (V2) let of_tups = List.map V3.of_tup let of_path2 ?(plane = Plane.xy) = Path2.lift plane let to_path2 ?(plane = Plane.xy) = List.map (Plane.project plane) let bbox = function | [] -> invalid_arg "Cannot calculate bbox for empty path." | hd :: tl -> let f (min, max) p = let min = V3.lower_bounds min p and max = V3.upper_bounds max p in min, max in let min, max = List.fold_left f (hd, hd) tl in Gg.Box3.of_pts min max let circle ?fn ?fa ?fs ?(plane = Plane.xy) r = Path2.lift plane (Path2.circle ?fn ?fa ?fs r) let square ?center ?(plane = Plane.xy) dims = Path2.lift plane (Path2.square ?center dims) let ellipse ?fn ?fa ?fs ?(plane = Plane.xy) radii = Path2.lift plane (Path2.ellipse ?fn ?fa ?fs radii) let star ?(plane = Plane.xy) ~r1 ~r2 n = Path2.lift plane (Path2.star ~r1 ~r2 n) let helix ?fn ?fa ?fs ?(left = true) ~n_turns ~pitch ?r2 r1 = let r2 = Option.value ~default:r1 r2 in let n_frags = Util.helical_fragments ?fn ?fa ?fs (Float.max r1 r2) in let r_step = (r2 -. r1) /. Float.of_int (n_turns * n_frags) and h_step = pitch /. Float.of_int n_frags and a_step = 2. *. Float.pi /. Float.of_int n_frags *. if left then -1. else 1. in let f i = let i = Float.of_int i in let r = r1 +. (r_step *. i) and a = a_step *. i in Float.(v3 (r *. cos a) (r *. sin a) (h_step *. i)) in List.init ((n_frags * n_turns) + 1) f let scaler ?ez dims = let f = match ez with | Some (p1, p2) -> let ez = Easing.make p1 p2 in fun u -> V2.lerp (v2 1. 1.) dims (ez u) | None -> V2.lerp (v2 1. 1.) dims in fun u -> Affine3.scale @@ V3.of_v2 ~z:1. @@ f u let twister ?ez rot = let f = match ez with | Some (p1, p2) -> let ez = Easing.make p1 p2 in fun u -> ez u *. rot | None -> ( *. ) rot in fun u -> Quaternion.(to_affine @@ make (v3 0. 0. 1.) (f u)) let to_transforms ?(mode = `Auto) ?scale_ez ?twist_ez ?scale ?twist path = let p = Array.of_list path in let len = Array.length p and id _ = Affine3.id in let rel_pos = if Option.(is_some scale || is_some twist) then ( let a = Array.of_list @@ cummulative_length path in for i = 0 to len - 1 do a.(i) <- a.(i) /. a.(len - 1) done; Array.get a ) else Fun.const 0. in if len < 2 then invalid_arg "Invalid path (too few points)."; let scaler = Util.value_map_opt ~default:id (scaler ?ez:scale_ez) scale and twister = Util.value_map_opt ~default:id (twister ?ez:twist_ez) twist and transformer = match mode with | `Euler -> let m = Quaternion.(to_affine @@ of_euler Float.(v3 (pi /. 2.) 0. (pi /. 2.))) in fun i -> let d = if i = 0 then V3.(p.(1) -@ p.(0)) else if i = len - 1 then V3.(p.(i) -@ p.(i - 1)) else V3.(p.(i + 1) -@ p.(i - 1)) in let dx = V3.x d and dy = V3.y d in let ay = Float.atan2 (V3.z d) (Float.sqrt ((dx *. dx) +. (dy *. dy))) and az = Float.atan2 dy dx in let q = Quaternion.of_euler (v3 0. (-.ay) az) in Affine3.(m %> Quaternion.(to_affine ~trans:p.(i) q)) | _ -> let accum_qs = let local i = let p1 = p.(i) and p2 = p.(i + 1) and p3 = p.(i + 2) in Quaternion.align V3.(normalize (p2 -@ p1)) V3.(normalize (p3 -@ p2)) in match List.init (len - 2) local with | [] -> [| Quaternion.id |] | [ q ] -> [| q; Quaternion.id |] | hd :: tl -> let f (acc, qs) m = let q = Quaternion.mul m acc in q, q :: qs in let _, qs = List.fold_left f (hd, [ hd; Quaternion.id ]) tl in Util.array_of_list_rev qs in let init = match mode with | `Auto -> let cardinal = (* Determine an appropriate axis to pre-align the 2d shape with (from normal of {x = 0.; y = 0.; z = 1.}), BEFORE alignment with the initial tangent of the path. Adjust for sign of major axes to prevent inconsistent flipping. *) let similarity a b = V3.dot a b /. V3.(norm a *. norm b) and n = V3.(normalize (p.(1) -@ p.(0))) in let z = similarity n (v3 0. 0. 1.) and x = similarity n (v3 1. 0. 0.) and y = similarity n (v3 0. 1. 0.) in let abs_x = Float.abs x and abs_y = Float.abs y and abs_z = Float.abs z and sgn_x = Math.sign x and sgn_y = Math.sign y and sgn_z = Math.sign z in let comp a b = if Float.compare (Float.abs (a -. b)) 0.01 = 1 then Float.compare a b else 0 in match comp abs_x abs_y, comp abs_x abs_z, comp abs_y abs_z with | 1, 1, _ -> v3 sgn_x 0. 0. (* x-axis *) | -1, _, 1 -> v3 0. sgn_y 0. (* y-axis *) | 0, -1, -1 -> v3 0. 0. sgn_z (* xy equal, but less than z *) | 0, _, _ -> v3 0. sgn_y 0. (* xy equal, roughly following plane *) | _ -> v3 0. 0. sgn_z in let d = V3.normalize V3.(p.(1) -@ p.(0)) in Quaternion.(to_affine @@ mul (align cardinal d) (align (v3 0. 0. 1.) cardinal)) | `Align initial -> Affine3.align initial (v3 0. 0. 1.) | _ -> Affine3.id in fun i -> if i = 0 then Affine3.(init %> translate p.(0)) else Affine3.(init %> Quaternion.(to_affine ~trans:p.(i) accum_qs.(i - 1))) in let f i = Affine3.(scaler (rel_pos i) %> twister (rel_pos i) %> transformer i) in List.init len f let helical_transforms ?fn ?fa ?fs ?scale_ez ?twist_ez ?scale ?twist ?(left = true) ~n_turns ~pitch ?r2 r1 = let r2 = Option.value ~default:r1 r2 in let n_frags = Util.helical_fragments ?fn ?fa ?fs (Float.max r1 r2) in let rot_sign = if left then -1. else 1. in let a_step = 2. *. Float.pi /. Float.of_int n_frags *. rot_sign and ax = let a = Float.(atan2 (pitch /. of_int n_frags) (pi *. 2. *. r1 /. of_int n_frags)) in (a *. rot_sign) +. (Float.pi /. 2.) in let path = helix ?fn ?fa ?fs ~left ~n_turns ~pitch ~r2 r1 in let len = List.length path and id _ = Affine3.id in let rel_pos = if Option.(is_some scale || is_some twist) then ( let a = Array.of_list @@ cummulative_length path in for i = 0 to len - 1 do a.(i) <- a.(i) /. a.(len - 1) done; Array.get a ) else Fun.const 0. in let scaler = Util.value_map_opt ~default:id (scaler ?ez:scale_ez) scale and twister = Util.value_map_opt ~default:id (twister ?ez:twist_ez) twist in let f i trans = let eul = v3 ax 0. (a_step *. Float.of_int i) in Affine3.( scaler (rel_pos i) %> twister (rel_pos i) %> Quaternion.(to_affine ~trans (of_euler eul)) ) in List.mapi f path let normal = function | p0 :: p1 :: p2 :: poly -> let area_vec = let f (sum, last) p = let c = V3.(cross (sub last p0) (sub p last)) in V3.add c sum, p in fst @@ List.fold_left f (f (V3.zero, p1) p2) poly in V3.(normalize @@ neg area_vec) | _ -> invalid_arg "Too few points to calculate path normal." let coplanar ?eps t = try Plane.are_points_on ?eps (Plane.of_normal @@ normal t) t with (* too few points, or co-linear *) | Invalid_argument _ -> false let to_plane ?eps = function | [ p0; p1; p2 ] -> Plane.make p0 p1 p2 | point :: _ as t -> let plane = Plane.of_normal ~point (normal t) in if Plane.are_points_on ?eps plane t then plane else invalid_arg "Path is not coplanar." | _ -> invalid_arg "Path must contain at least 3 points to define a plane." let project plane = to_path2 ~plane let centroid ?(eps = Util.epsilon) = function | [] | [ _ ] | [ _; _ ] -> invalid_arg "Polygon must have more than two points." | p0 :: p1 :: tl as t -> let plane = to_plane t in if not @@ Plane.are_points_on ~eps plane t then invalid_arg "Polygon must be coplanar."; let n = Plane.normal plane in let f (area_sum, p_sum, p1) p2 = let area = V3.(dot (cross (sub p2 p0) (sub p1 p0)) n) in area +. area_sum, V3.(add p_sum (smul (p0 +@ p1 +@ p2) area)), p2 in let area_sum, p_sum, _ = List.fold_left f (0., V3.zero, p1) tl in if Math.approx ~eps area_sum 0. then invalid_arg "The polygon is self-intersecting, or its points are collinear."; V3.(sdiv p_sum (area_sum *. 3.)) let area ?(signed = false) = function | [] | [ _ ] | [ _; _ ] -> 0. | p0 :: p1 :: tl as t -> let plane = to_plane t in if not @@ Plane.are_points_on plane t then invalid_arg "Polygon must be coplanar."; let n = Plane.normal plane in let f (area, p1) p2 = (area +. V3.(dot (cross (sub p1 p0) (sub p2 p0)) n)), p2 in let area, _ = List.fold_left f (0., p1) tl in if signed then area else Float.abs area include PathMatch.Make (V3) (struct let centroid = centroid let closest_tangent = closest_tangent end) let translate p = List.map (V3.translate p) let xtrans x = List.map (V3.xtrans x) let ytrans y = List.map (V3.ytrans y) let ztrans z = List.map (V3.ztrans z) let rotate ?about r = List.map (V3.rotate ?about r) let xrot ?about r = List.map (V3.xrot ?about r) let yrot ?about r = List.map (V3.yrot ?about r) let zrot ?about r = List.map (V3.zrot ?about r) let quaternion ?about q = List.map (Quaternion.transform ?about q) let axis_rotate ?about ax r = quaternion ?about (Quaternion.make ax r) let affine m = List.map (Affine3.transform m) let scale s = List.map (V3.scale s) let xscale x = List.map (V3.xscale x) let yscale y = List.map (V3.yscale y) let zscale z = List.map (V3.zscale z) let mirror ax = List.rev_map (V3.mirror ax) let prune_transforms ?(min_dist = 0.05) ~shape = function | [] -> [] | [ m ] -> [ 0, m ] | m0 :: transforms -> let f (acc, i, plane) m = let s' = affine m (shape i) in let valid = List.for_all (Plane.is_point_above ~eps:min_dist plane) s' in if valid then (i, m) :: acc, i + 1, to_plane s' else acc, i + 1, plane and plane = to_plane @@ affine m0 (shape 0) in let transforms, _, _ = List.fold_left f ([ 0, m0 ], 1, plane) transforms in List.rev transforms
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>