module Array:sig..end
type'at ='a array
An alias for the type of arrays.
Array operations.
val length : 'a array -> intReturn the length (number of elements) of the given array.
val get : 'a array -> int -> 'aArray.get a n returns the element number n of array a.
The first element has number 0.
The last element has number Array.length a - 1.
You can also write a.(n) instead of Array.get a n.
Invalid_argument if n is outside the range 0 to (Array.length a - 1).val set : 'a array -> int -> 'a -> unitArray.set a n x modifies array a in place, replacing
element number n with x.
You can also write a.(n) <- x instead of Array.set a n x.
Invalid_argument if n is outside the range 0 to Array.length a - 1.val make : int -> 'a -> 'a arrayArray.make n x returns a fresh array of length n,
initialized with x.
All the elements of this new array are initially
physically equal to x (in the sense of the == predicate).
Consequently, if x is mutable, it is shared among all elements
of the array, and modifying x through one of the array entries
will modify all other entries at the same time.
Invalid_argument if n < 0 or n > Sys.max_array_length.
If the value of x is a floating-point number, then the maximum
size is only Sys.max_array_length / 2.val create : int -> 'a -> 'a arrayval create_float : int -> float arrayArray.create_float n returns a fresh float array of length n,
with uninitialized data.
val make_float : int -> float arrayval init : int -> (int -> 'a) -> 'a arrayArray.init n f returns a fresh array of length n,
with element number i initialized to the result of f i.
In other terms, Array.init n f tabulates the results of f
applied to the integers 0 to n-1.
Invalid_argument if n < 0 or n > Sys.max_array_length.
If the return type of f is float, then the maximum
size is only Sys.max_array_length / 2.val make_matrix : int -> int -> 'a -> 'a array arrayArray.make_matrix dimx dimy e returns a two-dimensional array
(an array of arrays) with first dimension dimx and
second dimension dimy. All the elements of this new matrix
are initially physically equal to e.
The element (x,y) of a matrix m is accessed
with the notation m.(x).(y).
Invalid_argument if dimx or dimy is negative or
greater than Sys.max_array_length.
If the value of e is a floating-point number, then the maximum
size is only Sys.max_array_length / 2.val create_matrix : int -> int -> 'a -> 'a array arrayval append : 'a array -> 'a array -> 'a arrayArray.append v1 v2 returns a fresh array containing the
concatenation of the arrays v1 and v2.
Invalid_argument if
Array.length v1 + Array.length v2 > Sys.max_array_length.val concat : 'a array list -> 'a arraySame as Array.append, but concatenates a list of arrays.
val sub : 'a array -> int -> int -> 'a arrayArray.sub a start len returns a fresh array of length len,
containing the elements number start to start + len - 1
of array a.
Invalid_argument if start and len do not
designate a valid subarray of a; that is, if
start < 0, or len < 0, or start + len > Array.length a.val copy : 'a array -> 'a arrayArray.copy a returns a copy of a, that is, a fresh array
containing the same elements as a.
val fill : 'a array -> int -> int -> 'a -> unitArray.fill a ofs len x modifies the array a in place,
storing x in elements number ofs to ofs + len - 1.
Invalid_argument if ofs and len do not
designate a valid subarray of a.val blit : 'a array -> int -> 'a array -> int -> int -> unitArray.blit v1 o1 v2 o2 len copies len elements
from array v1, starting at element number o1, to array v2,
starting at element number o2. It works correctly even if
v1 and v2 are the same array, and the source and
destination chunks overlap.
Invalid_argument if o1 and len do not
designate a valid subarray of v1, or if o2 and len do not
designate a valid subarray of v2.val to_list : 'a array -> 'a listArray.to_list a returns the list of all the elements of a.
val of_list : 'a list -> 'a arrayArray.of_list l returns a fresh array containing the elements
of l.
Invalid_argument if the length of l is greater than
Sys.max_array_length.val iter : ('a -> unit) -> 'a array -> unitArray.iter f a applies function f in turn to all
the elements of a. It is equivalent to
f a.(0); f a.(1); ...; f a.(Array.length a - 1); ().
val iteri : (int -> 'a -> unit) -> 'a array -> unitSame as Array.iter, but the
function is applied with the index of the element as first argument,
and the element itself as second argument.
val map : ('a -> 'b) -> 'a array -> 'b arrayArray.map f a applies function f to all the elements of a,
and builds an array with the results returned by f:
[| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |].
val mapi : (int -> 'a -> 'b) -> 'a array -> 'b arraySame as Array.map, but the
function is applied to the index of the element as first argument,
and the element itself as second argument.
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b array -> 'aArray.fold_left f x a computes
f (... (f (f x a.(0)) a.(1)) ...) a.(n-1),
where n is the length of the array a.
val fold_right : ('b -> 'a -> 'a) -> 'b array -> 'a -> 'aArray.fold_right f a x computes
f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...)),
where n is the length of the array a.
val iter2 : ('a -> 'b -> unit) -> 'a array -> 'b array -> unitArray.iter2 f a b applies function f to all the elements of a
and b.
Invalid_argument if the arrays are not the same size.val map2 : ('a -> 'b -> 'c) -> 'a array -> 'b array -> 'c arrayArray.map2 f a b applies function f to all the elements of a
and b, and builds an array with the results returned by f:
[| f a.(0) b.(0); ...; f a.(Array.length a - 1) b.(Array.length b - 1)|].
Invalid_argument if the arrays are not the same size.val for_all : ('a -> bool) -> 'a array -> boolArray.for_all p [|a1; ...; an|] checks if all elements of the array
satisfy the predicate p. That is, it returns
(p a1) && (p a2) && ... && (p an).
val exists : ('a -> bool) -> 'a array -> boolArray.exists p [|a1; ...; an|] checks if at least one element of
the array satisfies the predicate p. That is, it returns
(p a1) || (p a2) || ... || (p an).
val for_all2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> boolSame as Array.for_all, but for a two-argument predicate.
Invalid_argument if the two arrays have different lengths.val exists2 : ('a -> 'b -> bool) -> 'a array -> 'b array -> boolSame as Array.exists, but for a two-argument predicate.
Invalid_argument if the two arrays have different lengths.val mem : 'a -> 'a array -> boolmem a l is true if and only if a is structurally equal
to an element of l (i.e. there is an x in l such that
compare a x = 0).
val memq : 'a -> 'a array -> boolSame as Array.mem, but uses physical equality instead of structural
equality to compare elements.
val sort : ('a -> 'a -> int) -> 'a array -> unitSort an array in increasing order according to a comparison
function. The comparison function must return 0 if its arguments
compare as equal, a positive integer if the first is greater,
and a negative integer if the first is smaller (see below for a
complete specification). For example, compare is
a suitable comparison function. After calling Array.sort, the
array is sorted in place in increasing order.
Array.sort is guaranteed to run in constant heap space
and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant stack space.
Specification of the comparison function:
Let a be the array and cmp the comparison function. The following
must be true for all x, y, z in a :
cmp x y > 0 if and only if cmp y x < 0cmp x y >= 0 and cmp y z >= 0 then cmp x z >= 0When Array.sort returns, a contains the same elements as before,
reordered in such a way that for all i and j valid indices of a :
cmp a.(i) a.(j) >= 0 if and only if i >= jval stable_sort : ('a -> 'a -> int) -> 'a array -> unitSame as Array.sort, but the sorting algorithm is stable (i.e.
elements that compare equal are kept in their original order) and
not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses a temporary
array of length n/2, where n is the length of the array.
It is usually faster than the current implementation of Array.sort.
val fast_sort : ('a -> 'a -> int) -> 'a array -> unitSame as Array.sort or Array.stable_sort, whichever is faster
on typical input.
val to_seq : 'a array -> 'a Seq.tIterate on the array, in increasing order. Modifications of the array during iteration will be reflected in the iterator.
val to_seqi : 'a array -> (int * 'a) Seq.tIterate on the array, in increasing order, yielding indices along elements. Modifications of the array during iteration will be reflected in the iterator.
val of_seq : 'a Seq.t -> 'a arrayCreate an array from the generator