8.23 Binding operators
(Introduced in 4.08.0)
Users can define let operators:
let ( let* ) o f =
match o with
| None -> None
| Some x -> f x
let return x = Some x
val ( let* ) : 'a option -> ('a -> 'b option) -> 'b option = <fun>
val return : 'a -> 'a option = <fun>
and then apply them using this convenient syntax:
let find_and_sum tbl k1 k2 =
let* x1 = Hashtbl.find_opt tbl k1 in
let* x2 = Hashtbl.find_opt tbl k2 in
return (x1 + x2)
val find_and_sum : ('a, int) Hashtbl.t -> 'a -> 'a -> int option = <fun>
which is equivalent to this expanded form:
let find_and_sum tbl k1 k2 =
( let* ) (Hashtbl.find_opt tbl k1)
(fun x1 ->
( let* ) (Hashtbl.find_opt tbl k2)
(fun x2 -> return (x1 + x2)))
val find_and_sum : ('a, int) Hashtbl.t -> 'a -> 'a -> int option = <fun>
Users can also define and operators:
module ZipSeq = struct
type 'a t = 'a Seq.t
open Seq
let rec return x =
fun () -> Cons(x, return x)
let rec prod a b =
fun () ->
match a (), b () with
| Nil, _ | _, Nil -> Nil
| Cons(x, a), Cons(y, b) -> Cons((x, y), prod a b)
let ( let+ ) f s = map s f
let ( and+ ) a b = prod a b
end
module ZipSeq :
sig
type 'a t = 'a Seq.t
val return : 'a -> 'a Seq.t
val prod : 'a Seq.t -> 'b Seq.t -> ('a * 'b) Seq.t
val ( let+ ) : 'a Seq.t -> ('a -> 'b) -> 'b Seq.t
val ( and+ ) : 'a Seq.t -> 'b Seq.t -> ('a * 'b) Seq.t
end
to support the syntax:
open ZipSeq
let sum3 z1 z2 z3 =
let+ x1 = z1
and+ x2 = z2
and+ x3 = z3 in
x1 + x2 + x3
val sum3 : int Seq.t -> int Seq.t -> int Seq.t -> int Seq.t = <fun>
which is equivalent to this expanded form:
open ZipSeq
let sum3 z1 z2 z3 =
( let+ ) (( and+ ) (( and+ ) z1 z2) z3)
(fun ((x1, x2), x3) -> x1 + x2 + x3)
val sum3 : int Seq.t -> int Seq.t -> int Seq.t -> int Seq.t = <fun>
8.23.1 Rationale
This extension is intended to provide a convenient syntax for working
with monads and applicatives.
An applicative should provide a module implementing the following
interface:
module type Applicative_syntax = sig
type 'a t
val ( let+ ) : 'a t -> ('a -> 'b) -> 'b t
val ( and+ ): 'a t -> 'b t -> ('a * 'b) t
end
where (let+) is bound to the map operation and (and+) is bound to
the monoidal product operation.
A monad should provide a module implementing the following interface:
module type Monad_syntax = sig
include Applicative_syntax
val ( let* ) : 'a t -> ('a -> 'b t) -> 'b t
val ( and* ): 'a t -> 'b t -> ('a * 'b) t
end
where (let*) is bound to the bind operation, and (and*) is also
bound to the monoidal product operation.