Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Iter.ml1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242(* This file is free software, part of iter. See file "license" for more details. *) type 'a t = ('a -> unit) -> unit (** Iter abstract iterator type *) type 'a iter = 'a t type 'a equal = 'a -> 'a -> bool type 'a hash = 'a -> int (** Build an iterator from a iter function *) let from_iter f = f let from_labelled_iter iter f = iter ~f let rec from_fun f k = match f () with | None -> () | Some x -> k x; from_fun f k let[@inline] empty _ = () let[@inline] return x k = k x let singleton = return let pure = return let[@inline] doubleton x y k = k x; k y let[@inline] cons x l k = k x; l k let[@inline] snoc l x k = l k; k x let[@inline] repeat x k = while true do k x done let init f yield = let rec aux i = yield (f i); aux (i + 1) in aux 0 let rec iterate f x k = k x; iterate f (f x) k let rec forever f k = k (f ()); forever f k let cycle s k = while true do s k done let[@inline] iter f seq = seq f let iteri f seq = let r = ref 0 in seq (fun x -> f !r x; incr r) let for_each seq f = iter f seq let for_eachi seq f = iteri f seq let fold f init seq = let r = ref init in seq (fun elt -> r := f !r elt); !r let foldi f init seq = let i = ref 0 in let r = ref init in seq (fun elt -> r := f !r !i elt; incr i); !r let fold_map f init seq yield = let r = ref init in seq (fun x -> let acc', y = f !r x in r := acc'; yield y) let fold_filter_map f init seq yield = let r = ref init in seq (fun x -> let acc', y = f !r x in r := acc'; match y with | None -> () | Some y' -> yield y') let[@inline] map f seq k = seq (fun x -> k (f x)) let[@inline] mapi f seq k = let i = ref 0 in seq (fun x -> k (f !i x); incr i) let map_by_2 f seq k = let r = ref None in let f y = match !r with | None -> r := Some y | Some x -> r := None; k (f x y) in seq f; match !r with | None -> () | Some x -> k x let[@inline] filter p seq k = seq (fun x -> if p x then k x) let[@inline] append s1 s2 k = s1 k; s2 k let[@inline] append_l l k = List.iter (fun sub -> sub k) l let[@inline] concat s k = s (fun s' -> s' k) let flatten = concat let[@inline] flat_map f seq k = seq (fun x -> f x k) let[@inline] flat_map_l f seq k = seq (fun x -> List.iter k (f x)) let[@unroll 2] rec seq_list_map f l k = match l with | [] -> k [] | x :: tail -> f x (fun x' -> seq_list_map f tail (fun tail' -> k (x' :: tail'))) let[@inline] seq_list l = seq_list_map (fun x -> x) l let[@inline] filter_map f seq k = seq (fun x -> match f x with | None -> () | Some y -> k y) let filter_mapi f seq k = let i = ref 0 in seq (fun x -> let j = !i in incr i; match f j x with | None -> () | Some y -> k y) let filter_count f seq = let i = ref 0 in seq (fun x -> if f x then incr i); !i let intersperse elem seq k = let first = ref true in seq (fun x -> if !first then first := false else k elem; k x) let keep_some seq k = seq (function | Some x -> k x | None -> ()) let keep_ok seq k = seq (function | Result.Ok x -> k x | Result.Error _ -> ()) let keep_error seq k = seq (function | Result.Error x -> k x | Result.Ok _ -> ()) (** Mutable unrolled list to serve as intermediate storage *) module MList = struct type 'a node = | Nil | Cons of { a: 'a array; mutable n: int; mutable tl: 'a node } (* build and call callback on every element *) let of_iter_with seq k = let chunk_size = ref 8 in let acc = ref Nil in let cur = ref Nil in let tail = ref Nil in let[@inline] replace_tail () = match !acc with | Nil -> acc := !cur | _ -> (match !tail with | Nil -> () | Cons r -> r.tl <- !cur) in seq (fun x -> k x; (* callback *) match !cur with | Nil -> let n = !chunk_size in if n < 4096 then chunk_size := 2 * n; cur := Cons { a = Array.make n x; n = 1; tl = Nil } | Cons r -> assert (r.n < Array.length r.a); r.a.(r.n) <- x; r.n <- succ r.n; if r.n = Array.length r.a then ( replace_tail (); tail := !cur; cur := Nil )); replace_tail (); !acc let of_iter seq = of_iter_with seq (fun _ -> ()) let rec iter f l = match l with | Nil -> () | Cons { a; n; tl } -> for i = 0 to n - 1 do f a.(i) done; iter f tl let iteri f l = let rec iteri i f l = match l with | Nil -> () | Cons { a; n; tl } -> for j = 0 to n - 1 do f (i + j) a.(j) done; iteri (i + n) f tl in iteri 0 f l let rec iter_rev f l = match l with | Nil -> () | Cons { a; n; tl } -> iter_rev f tl; for i = n - 1 downto 0 do f a.(i) done let length l = let rec len acc l = match l with | Nil -> acc | Cons { n; tl; _ } -> len (acc + n) tl in len 0 l (** Get element by index *) let rec get l i = match l with | Nil -> raise (Invalid_argument "MList.get") | Cons { a; n; _ } when i < n -> a.(i) | Cons { n; tl; _ } -> get tl (i - n) let to_iter l k = iter k l let _to_next arg l = let cur = ref l in let i = ref 0 in (* offset in cons *) let rec get_next _ = match !cur with | Nil -> None | Cons { n; tl; _ } when !i = n -> cur := tl; i := 0; get_next arg | Cons { a; _ } -> let x = a.(!i) in incr i; Some x in get_next let to_gen l = _to_next () l let to_seq l = let rec make (l, i) () = match l with | Nil -> Seq.Nil | Cons { n; tl; _ } when i = n -> make (tl, 0) () | Cons { a; _ } -> Seq.Cons (a.(i), make (l, i + 1)) in make (l, 0) end let persistent seq = let l = MList.of_iter seq in MList.to_iter l type 'a lazy_state = LazySuspend | LazyCached of 'a t let persistent_lazy (seq : 'a t) = let r = ref LazySuspend in fun k -> match !r with | LazyCached seq' -> seq' k | LazySuspend -> (* here if this traversal is interruted, no caching occurs *) let seq' = MList.of_iter_with seq k in r := LazyCached (MList.to_iter seq') let sort ?(cmp = Stdlib.compare) seq = (* use an intermediate list, then sort the list *) let l = fold (fun l x -> x :: l) [] seq in let l = List.fast_sort cmp l in fun k -> List.iter k l let sorted ?(cmp = Stdlib.compare) seq = let exception Exit_sorted in let prev = ref None in try seq (fun x -> match !prev with | Some y when cmp y x > 0 -> raise_notrace Exit_sorted | _ -> prev := Some x); true with Exit_sorted -> false let group_succ_by ?(eq = fun x y -> x = y) seq k = let cur = ref [] in seq (fun x -> match !cur with | [] -> cur := [ x ] | y :: _ as l when eq x y -> cur := x :: l (* [x] belongs to the group *) | _ :: _ as l -> k l; (* yield group, and start another one *) cur := [ x ]); (* last list *) match !cur with | [] -> () | _ :: _ as l -> k l let group_by (type k) ?(hash = Hashtbl.hash) ?(eq = ( = )) seq = let module Tbl = Hashtbl.Make (struct type t = k let equal = eq let hash = hash end) in (* compute group table *) let tbl = lazy (let tbl = Tbl.create 32 in seq (fun x -> let l = try Tbl.find tbl x with Not_found -> [] in Tbl.replace tbl x (x :: l)); tbl) in fun yield -> Tbl.iter (fun _ l -> yield l) (Lazy.force tbl) let count (type k) ?(hash = Hashtbl.hash) ?(eq = ( = )) seq = let module Tbl = Hashtbl.Make (struct type t = k let equal = eq let hash = hash end) in (* compute group table *) let tbl = lazy (let tbl = Tbl.create 32 in seq (fun x -> let n = try Tbl.find tbl x with Not_found -> 0 in Tbl.replace tbl x (n + 1)); tbl) in fun yield -> Tbl.iter (fun x n -> yield (x, n)) (Lazy.force tbl) let uniq ?(eq = fun x y -> x = y) seq k = let has_prev = ref false and prev = ref (Obj.magic 0) in (* avoid option type, costly *) seq (fun x -> if !has_prev && eq !prev x then () (* duplicate *) else ( has_prev := true; prev := x; k x )) let sort_uniq (type elt) ?(cmp = Stdlib.compare) seq = let module S = Set.Make (struct type t = elt let compare = cmp end) in let set = fold (fun acc x -> S.add x acc) S.empty seq in fun k -> S.iter k set let[@inline] product outer inner k = outer (fun x -> inner (fun y -> k (x, y))) let rec diagonal_l l yield = match l with | [] -> () | x :: tail -> List.iter (fun y -> yield (x, y)) tail; diagonal_l tail yield let diagonal seq = let l = ref [] in seq (fun x -> l := x :: !l); diagonal_l (List.rev !l) let join ~join_row s1 s2 k = s1 (fun a -> s2 (fun b -> match join_row a b with | None -> () | Some c -> k c)) let join_by (type a) ?(eq = ( = )) ?(hash = Hashtbl.hash) f1 f2 ~merge c1 c2 = let module Tbl = Hashtbl.Make (struct type t = a let equal = eq let hash = hash end) in let tbl = Tbl.create 32 in c1 (fun x -> let key = f1 x in Tbl.add tbl key x); let res = ref [] in c2 (fun y -> let key = f2 y in let xs = Tbl.find_all tbl key in List.iter (fun x -> match merge key x y with | None -> () | Some z -> res := z :: !res) xs); fun yield -> List.iter yield !res type ('a, 'b) join_all_cell = { mutable ja_left: 'a list; mutable ja_right: 'b list; } let join_all_by (type a) ?(eq = ( = )) ?(hash = Hashtbl.hash) f1 f2 ~merge c1 c2 = let module Tbl = Hashtbl.Make (struct type t = a let equal = eq let hash = hash end) in let tbl = Tbl.create 32 in (* build the map [key -> cell] *) c1 (fun x -> let key = f1 x in try let c = Tbl.find tbl key in c.ja_left <- x :: c.ja_left with Not_found -> Tbl.add tbl key { ja_left = [ x ]; ja_right = [] }); c2 (fun y -> let key = f2 y in try let c = Tbl.find tbl key in c.ja_right <- y :: c.ja_right with Not_found -> Tbl.add tbl key { ja_left = []; ja_right = [ y ] }); let res = ref [] in Tbl.iter (fun key cell -> match merge key cell.ja_left cell.ja_right with | None -> () | Some z -> res := z :: !res) tbl; fun yield -> List.iter yield !res let group_join_by (type a) ?(eq = ( = )) ?(hash = Hashtbl.hash) f c1 c2 = let module Tbl = Hashtbl.Make (struct type t = a let equal = eq let hash = hash end) in let tbl = Tbl.create 32 in c1 (fun x -> Tbl.replace tbl x []); c2 (fun y -> (* project [y] into some element of [c1] *) let key = f y in try let l = Tbl.find tbl key in Tbl.replace tbl key (y :: l) with Not_found -> ()); fun yield -> Tbl.iter (fun k l -> yield (k, l)) tbl let union (type a) ?(eq = ( = )) ?(hash = Hashtbl.hash) c1 c2 = let module Tbl = Hashtbl.Make (struct type t = a let equal = eq let hash = hash end) in let tbl = Tbl.create 32 in c1 (fun x -> Tbl.replace tbl x ()); c2 (fun x -> Tbl.replace tbl x ()); fun yield -> Tbl.iter (fun x _ -> yield x) tbl type inter_status = Inter_left | Inter_both let inter (type a) ?(eq = ( = )) ?(hash = Hashtbl.hash) c1 c2 = let module Tbl = Hashtbl.Make (struct type t = a let equal = eq let hash = hash end) in let tbl = Tbl.create 32 in c1 (fun x -> Tbl.replace tbl x Inter_left); c2 (fun x -> try match Tbl.find tbl x with | Inter_left -> Tbl.replace tbl x Inter_both (* save *) | Inter_both -> () with Not_found -> ()); fun yield -> Tbl.iter (fun x res -> if res = Inter_both then yield x) tbl let diff (type a) ?(eq = ( = )) ?(hash = Hashtbl.hash) c1 c2 = let module Tbl = Hashtbl.Make (struct type t = a let equal = eq let hash = hash end) in let tbl = Tbl.create 32 in c2 (fun x -> Tbl.replace tbl x ()); fun yield -> c1 (fun x -> if not (Tbl.mem tbl x) then yield x) let subset (type a) ?(eq = ( = )) ?(hash = Hashtbl.hash) c1 c2 = let exception Subset_exit in let module Tbl = Hashtbl.Make (struct type t = a let equal = eq let hash = hash end) in let tbl = Tbl.create 32 in c2 (fun x -> Tbl.replace tbl x ()); try c1 (fun x -> if not (Tbl.mem tbl x) then raise_notrace Subset_exit); true with Subset_exit -> false let rec unfoldr f b k = match f b with | None -> () | Some (x, b') -> k x; unfoldr f b' k let scan f acc seq k = k acc; let acc = ref acc in seq (fun elt -> let acc' = f !acc elt in k acc'; acc := acc') let max ?(lt = fun x y -> x < y) seq = let ret = ref None in seq (fun x -> match !ret with | None -> ret := Some x | Some y -> if lt y x then ret := Some x); !ret let max_exn ?lt seq = match max ?lt seq with | Some x -> x | None -> raise_notrace Not_found let min ?(lt = fun x y -> x < y) seq = let ret = ref None in seq (fun x -> match !ret with | None -> ret := Some x | Some y -> if lt x y then ret := Some x); !ret let min_exn ?lt seq = match min ?lt seq with | Some x -> x | None -> raise Not_found let[@inline] sum seq = let n = ref 0 in seq (fun x -> n := !n + x); !n (* https://en.wikipedia.org/wiki/Kahan_summation_algorithm *) let sumf seq : float = let sum = ref 0. in let c = ref 0. in (* error compensation *) seq (fun x -> let y = x -. !c in let t = !sum +. y in c := t -. !sum -. y; sum := t); !sum let head seq = let exception ExitHead in let r = ref None in try seq (fun x -> r := Some x; raise_notrace ExitHead); None with ExitHead -> !r let head_exn seq = match head seq with | None -> invalid_arg "Iter.head_exn" | Some x -> x let take n seq k = let exception ExitTake in let count = ref 0 in try seq (fun x -> if !count = n then raise_notrace ExitTake; incr count; k x) with ExitTake -> () let take_while p seq k = let exception ExitTakeWhile in try seq (fun x -> if p x then k x else raise_notrace ExitTakeWhile) with ExitTakeWhile -> () let map_while f seq k = let exception ExitMapWhile in let consume x = match f x with | `Yield y -> k y | `Return y -> k y; raise_notrace ExitMapWhile | `Stop -> raise_notrace ExitMapWhile in try seq consume with ExitMapWhile -> () let fold_while f s seq = let exception ExitFoldWhile in let state = ref s in let consume x = let acc, cont = f !state x in state := acc; match cont with | `Stop -> raise_notrace ExitFoldWhile | `Continue -> () in try seq consume; !state with ExitFoldWhile -> !state let drop n seq k = let count = ref 0 in seq (fun x -> if !count >= n then k x else incr count) let drop_while p seq k = let drop = ref true in seq (fun x -> if !drop then if p x then () else ( drop := false; k x ) else k x) let rev seq = let l = MList.of_iter seq in fun k -> MList.iter_rev k l let for_all p seq = let exception ExitForall in try seq (fun x -> if not (p x) then raise_notrace ExitForall); true with ExitForall -> false (** Exists there some element satisfying the predicate? *) let exists p seq = let exception ExitExists in try seq (fun x -> if p x then raise_notrace ExitExists); false with ExitExists -> true let mem ?(eq = ( = )) x seq = exists (eq x) seq let find_map f seq = let exception ExitFind in let r = ref None in (try seq (fun x -> match f x with | None -> () | Some _ as res -> r := res; raise_notrace ExitFind) with ExitFind -> ()); !r let find = find_map let find_mapi f seq = let exception ExitFind in let i = ref 0 in let r = ref None in (try seq (fun x -> match f !i x with | None -> incr i | Some _ as res -> r := res; raise_notrace ExitFind) with ExitFind -> ()); !r let findi = find_mapi let find_pred f seq = find_map (fun x -> if f x then Some x else None) seq let find_pred_exn f seq = match find_pred f seq with | Some x -> x | None -> raise Not_found let[@inline] length seq = let r = ref 0 in seq (fun _ -> incr r); !r let is_empty seq = let exception ExitIsEmpty in try seq (fun _ -> raise_notrace ExitIsEmpty); true with ExitIsEmpty -> false (** {2 Transform an iterator} *) let[@inline] zip_i seq k = let r = ref 0 in seq (fun x -> let n = !r in incr r; k (n, x)) let fold2 f acc seq2 = let acc = ref acc in seq2 (fun (x, y) -> acc := f !acc x y); !acc let[@inline] iter2 f seq2 = seq2 (fun (x, y) -> f x y) let[@inline] map2 f seq2 k = seq2 (fun (x, y) -> k (f x y)) let[@inline] map2_2 f g seq2 k = seq2 (fun (x, y) -> k (f x y, g x y)) (** {2 Basic data structures converters} *) let to_list seq = List.rev (fold (fun y x -> x :: y) [] seq) let[@inline] to_rev_list seq = fold (fun y x -> x :: y) [] seq let[@inline] of_list l k = List.iter k l let on_list f l = to_list (f (of_list l)) let pair_with_idx seq k = let r = ref 0 in seq (fun x -> let n = !r in incr r; k (n, x)) let to_opt = head let[@inline] of_opt o k = match o with | None -> () | Some x -> k x let to_array seq = let l = MList.of_iter seq in let n = MList.length l in if n = 0 then [||] else ( let a = Array.make n (MList.get l 0) in MList.iteri (fun i x -> a.(i) <- x) l; a ) let[@inline] of_array a k = Array.iter k a let[@inline] of_array_i a k = for i = 0 to Array.length a - 1 do k (i, Array.unsafe_get a i) done let array_slice a i j k = assert (i >= 0 && j < Array.length a); for idx = i to j do k a.(idx) (* iterate on sub-array *) done let rec of_seq l k = match l () with | Seq.Nil -> () | Seq.Cons (x, tl) -> k x; of_seq tl k let to_seq_persistent seq = let l = MList.of_iter seq in MList.to_seq l let[@inline] to_stack s seq = iter (fun x -> Stack.push x s) seq let[@inline] of_stack s k = Stack.iter k s let[@inline] to_queue q seq = seq (fun x -> Queue.push x q) let[@inline] of_queue q k = Queue.iter k q let[@inline] hashtbl_add h seq = seq (fun (k, v) -> Hashtbl.add h k v) let hashtbl_replace h seq = seq (fun (k, v) -> Hashtbl.replace h k v) let to_hashtbl seq = let h = Hashtbl.create 3 in hashtbl_replace h seq; h let[@inline] of_hashtbl h k = Hashtbl.iter (fun a b -> k (a, b)) h let hashtbl_keys h k = Hashtbl.iter (fun a _ -> k a) h let hashtbl_values h k = Hashtbl.iter (fun _ b -> k b) h let[@inline] of_str s k = String.iter k s let to_str seq = let b = Buffer.create 64 in iter (fun c -> Buffer.add_char b c) seq; Buffer.contents b let concat_str seq = let b = Buffer.create 64 in iter (Buffer.add_string b) seq; Buffer.contents b exception OneShotSequence let of_in_channel ic = let first = ref true in fun k -> if not !first then raise OneShotSequence else ( first := false; try while true do let c = input_char ic in k c done with End_of_file -> () ) let to_buffer seq buf = seq (fun c -> Buffer.add_char buf c) (** Iterator on integers in [start...stop] by steps 1 *) let int_range ~start ~stop k = for i = start to stop do k i done let int_range_dec ~start ~stop k = for i = start downto stop do k i done let int_range_by ~step i j yield = if step = 0 then invalid_arg "int_range_by"; for k = 0 to (j - i) / step do yield ((k * step) + i) done let bools k = k false; k true let of_set (type s v) m set = let module S = (val m : Set.S with type t = s and type elt = v) in fun k -> S.iter k set let to_set (type s v) m seq = let module S = (val m : Set.S with type t = s and type elt = v) in fold (fun set x -> S.add x set) S.empty seq type 'a gen = unit -> 'a option (* consume the generator to build a MList *) let rec of_gen1_ g k = match g () with | None -> () | Some x -> k x; of_gen1_ g k let of_gen_once g = let first = ref true in fun k -> if !first then first := false else raise OneShotSequence; of_gen1_ g k let of_gen g = let l = MList.of_iter (of_gen1_ g) in MList.to_iter l let to_gen seq = let l = MList.of_iter seq in MList.to_gen l (** {2 Functorial conversions between sets and iterators} *) module Set = struct module type S = sig include Set.S val of_iter : elt iter -> t val to_iter : t -> elt iter val to_list : t -> elt list val of_list : elt list -> t val of_seq : elt iter -> t (** @deprecated use {!of_iter} instead *) val to_seq : t -> elt iter (** @deprecated use {!to_iter} instead *) end (** Create an enriched Set module from the given one *) module Adapt (X : Set.S) : S with type elt = X.elt and type t = X.t = struct let to_iter_ set k = X.iter k set let of_iter_ seq = fold (fun set x -> X.add x set) X.empty seq include X let to_iter = to_iter_ let of_iter = of_iter_ let to_seq = to_iter_ let of_seq = of_iter_ let of_list l = List.fold_left (fun set x -> add x set) empty l let to_list = elements end (** Functor to build an extended Set module from an ordered type *) module Make (X : Set.OrderedType) = struct module MySet = Set.Make (X) include Adapt (MySet) end end (** {2 Conversion between maps and iterators.} *) module Map = struct module type S = sig include Map.S val to_iter : 'a t -> (key * 'a) iter val of_iter : (key * 'a) iter -> 'a t val keys : 'a t -> key iter val values : 'a t -> 'a iter val to_list : 'a t -> (key * 'a) list val of_list : (key * 'a) list -> 'a t val to_seq : 'a t -> (key * 'a) iter (** @deprecated use {!to_iter} instead *) val of_seq : (key * 'a) iter -> 'a t (** @deprecated use {!of_iter} instead *) end (** Adapt a pre-existing Map module to make it iterator-aware *) module Adapt (M : Map.S) = struct let to_iter_ m = from_iter (fun k -> M.iter (fun x y -> k (x, y)) m) let of_iter_ seq = fold (fun m (k, v) -> M.add k v m) M.empty seq let keys m = from_iter (fun k -> M.iter (fun x _ -> k x) m) let values m = from_iter (fun k -> M.iter (fun _ y -> k y) m) [@@@ocaml.warning "-32"] let of_list l = of_iter_ (of_list l) let to_list x = to_list (to_iter_ x) [@@@ocaml.warning "+32"] include M let to_iter = to_iter_ let of_iter = of_iter_ let to_seq = to_iter_ let of_seq = of_iter_ end (** Create an enriched Map module, with iterator-aware functions *) module Make (V : Map.OrderedType) : S with type key = V.t = struct module M = Map.Make (V) include Adapt (M) end end (** {2 Infinite iterators of random values} *) let random_int bound = forever (fun () -> Random.int bound) let random_bool = forever Random.bool let random_float bound = forever (fun () -> Random.float bound) let random_array a k = assert (Array.length a > 0); while true do let i = Random.int (Array.length a) in k a.(i) done let random_list l = random_array (Array.of_list l) (* See http://en.wikipedia.org/wiki/Fisher-Yates_shuffle *) let shuffle_array a = for k = Array.length a - 1 downto 0 + 1 do let l = Random.int (k + 1) in let tmp = a.(l) in a.(l) <- a.(k); a.(k) <- tmp done let shuffle seq = let a = to_array seq in shuffle_array a; of_array a let shuffle_buffer n seq k = let seq_front = take n seq in let a = to_array seq_front in let l = Array.length a in if l < n then ( shuffle_array a; of_array a k ) else ( let seq = drop n seq in let f x = let i = Random.int n in let y = a.(i) in a.(i) <- x; k y in seq f ) (** {2 Sampling} *) (** See https://en.wikipedia.org/wiki/Reservoir_sampling#Algorithm_R *) let sample k seq = match head seq with | None -> [||] | Some x -> let a = Array.make k x in let i = ref (-1) in let f x = incr i; if !i < k then a.(!i) <- x else ( let j = Random.int !i in if j < k then a.(j) <- x else () ) in seq f; if !i < k then Array.sub a 0 (!i + 1) else a (** {2 Infix functions} *) module Infix = struct let[@inline] ( -- ) i j = int_range ~start:i ~stop:j let[@inline] ( --^ ) i j = int_range_dec ~start:i ~stop:j let[@inline] ( >>= ) x f = flat_map f x let[@inline] ( >|= ) x f = map f x let[@inline] ( <*> ) funs args k = funs (fun f -> args (fun x -> k (f x))) let ( <+> ) = append let[@inline] ( let+ ) x f = map f x let[@inline] ( let* ) x f = flat_map f x let ( and+ ) = product let ( and* ) = product end include Infix (** {2 Pretty printing of iterators} *) (** Pretty print an ['a iter], using the given pretty printer to print each elements. An optional separator string can be provided. *) let pp_seq ?(sep = ", ") pp_elt formatter seq = let first = ref true in seq (fun x -> if !first then first := false else ( Format.pp_print_string formatter sep; Format.pp_print_cut formatter () ); pp_elt formatter x) let pp_buf ?(sep = ", ") pp_elt buf seq = let first = ref true in seq (fun x -> if !first then first := false else Buffer.add_string buf sep; pp_elt buf x) let to_string ?sep pp_elt seq = let buf = Buffer.create 25 in pp_buf ?sep (fun buf x -> Buffer.add_string buf (pp_elt x)) buf seq; Buffer.contents buf (** {2 Basic IO} *) module IO = struct let lines_of ?(mode = 0o644) ?(flags = [ Open_rdonly ]) filename k = let ic = open_in_gen flags mode filename in try while true do let line = input_line ic in k line done with | End_of_file -> close_in ic | e -> close_in_noerr ic; raise e let chunks_of ?(mode = 0o644) ?(flags = []) ?(size = 1024) filename k = let ic = open_in_gen flags mode filename in try let buf = Bytes.create size in let n = ref 0 in let stop = ref false in while not !stop do n := 0; (* try to read [size] chars. If [input] returns [0] it means the end of file, so we stop, but first we yield the current chunk *) while !n < size && not !stop do let n' = input ic buf !n (size - !n) in if n' = 0 then stop := true else n := !n + n' done; if !n > 0 then k (Bytes.sub_string buf 0 !n) done; close_in ic with e -> close_in_noerr ic; raise e let with_out_ ?(mode = 0o644) ?(flags = [ Open_creat; Open_wronly ]) filename f = let oc = open_out_gen flags mode filename in try f oc; close_out oc with e -> close_out oc; raise e let write_bytes_to ?mode ?flags filename it = with_out_ ?mode ?flags filename (fun oc -> it (fun s -> output oc s 0 (Bytes.length s))) let write_to ?mode ?flags filename seq = write_bytes_to ?mode ?flags filename (map Bytes.unsafe_of_string seq) let write_bytes_lines ?mode ?flags filename it = with_out_ ?mode ?flags filename (fun oc -> it (fun s -> output oc s 0 (Bytes.length s); output_char oc '\n')) let write_lines ?mode ?flags filename seq = write_bytes_lines ?mode ?flags filename (map Bytes.unsafe_of_string seq) end