Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
type.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
(* * Copyright (c) 2016-2017 Thomas Gazagnaire <thomas@gazagnaire.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) include Type_intf include Type_core include Staging open Utils (* Combinators for Repr types *) let unit = Prim Unit let bool = Prim Bool let char = Prim Char let int = Prim Int let int32 = Prim Int32 let int64 = Prim Int64 let float = Prim Float let string = Prim (String `Int) let bytes = Prim (Bytes `Int) let string_of n = Prim (String n) let bytes_of n = Prim (Bytes n) let list ?(len = `Int) v = List { v; len } let array ?(len = `Int) v = Array { v; len } let pair a b = Tuple (Pair (a, b)) let triple a b c = Tuple (Triple (a, b, c)) let quad a b c d = Tuple (Quad (a, b, c, d)) let option a = Option a let boxed t = Boxed t let abstract ~pp ~of_string ~json ~bin ?unboxed_bin ~equal ~compare ~short_hash ~pre_hash () = let encode_json, decode_json = json in let encode_bin, decode_bin, size_of = bin in let unboxed_encode_bin, unboxed_decode_bin, unboxed_size_of = match unboxed_bin with None -> bin | Some b -> b in Custom { cwit = `Witness (Witness.make ()); pp; of_string; pre_hash; encode_bin; decode_bin; size_of; compare; equal; short_hash; unboxed_encode_bin; unboxed_decode_bin; unboxed_size_of; } |> annotate ~add:Encode_json.add ~data:encode_json |> annotate ~add:Decode_json.add ~data:decode_json (* fix points *) let mu : type a. (a t -> a t) -> a t = fun f -> let rec fake_x : a self = { self_unroll = f; self_fix = Self fake_x } in let real_x = f (Self fake_x) in fake_x.self_fix <- real_x; Self fake_x let mu2 : type a b. (a t -> b t -> a t * b t) -> a t * b t = fun f -> let rec fake_x = let self_unroll a = let b = mu (fun b -> f a b |> snd) in f a b |> fst in { self_unroll; self_fix = Self fake_x } in let rec fake_y = let self_unroll b = let a = mu (fun a -> f a b |> fst) in f a b |> snd in { self_unroll; self_fix = Self fake_y } in let real_x, real_y = f (Self fake_x) (Self fake_y) in fake_x.self_fix <- real_x; fake_y.self_fix <- real_y; (Self fake_x, Self fake_y) (* records *) type ('a, 'b, 'c) open_record = ('a, 'c) fields -> string * 'b * ('a, 'b) fields let field fname ftype fget = check_valid_utf8 fname; { fname; ftype; fget } let record : string -> 'b -> ('a, 'b, 'b) open_record = fun n c fs -> (n, c, fs) let app : type a b c d. (a, b, c -> d) open_record -> (a, c) field -> (a, b, d) open_record = fun r f fs -> let n, c, fs = r (F1 (f, fs)) in (n, c, fs) module String_Set = Set.Make (String) (** [check_unique f l] checks that all the strings in [l] are unique. Otherwise, calls [f dup] with [dup] the first duplicate. *) let check_unique f = let rec aux set = function | [] -> () | x :: xs -> ( match String_Set.find_opt x set with | None -> aux (String_Set.add x set) xs | Some _ -> f x) in aux String_Set.empty let check_unique_field_names rname rfields = let names = List.map (fun (Field { fname; _ }) -> fname) rfields in let failure fname = Fmt.invalid_arg "The name %s was used for two or more fields in record %s." fname rname in check_unique failure names let sealr : type a b. (a, b, a) open_record -> a t = fun r -> let rname, c, fs = r F0 in let rwit = Witness.make () in let sealed = { rwit; rname; rfields = Fields (fs, c) } in check_unique_field_names rname (fields sealed); Record sealed let ( |+ ) = app (* variants *) type 'a case_p = 'a case_v type ('a, 'b) case = int -> 'a a_case * 'b let case0 cname0 c0 = check_valid_utf8 cname0; fun ctag0 -> let c = { ctag0; cname0; c0 } in (C0 c, CV0 c) let case1 : type a b. string -> b t -> (b -> a) -> (a, b -> a case_p) case = fun cname1 ctype1 c1 -> check_valid_utf8 cname1; fun ctag1 -> let cwit1 : b Witness.t = Witness.make () in let c = { ctag1; cname1; ctype1; cwit1; c1 } in (C1 c, fun v -> CV1 (c, v)) type ('a, 'b, 'c) open_variant = 'a a_case list -> string * 'c * 'a a_case list let variant n c vs = (n, c, vs) let app v c cs = let n, fc, cs = v cs in let c, f = c (List.length cs) in (n, fc f, c :: cs) let check_unique_case_names vname vcases = let n0, n1 = List.partition (function C0 _ -> true | C1 _ -> false) vcases in let names0 = List.map (function C0 { cname0; _ } -> cname0 | _ -> assert false) n0 in let names1 = List.map (function C1 { cname1; _ } -> cname1 | _ -> assert false) n1 in check_unique (fun cname -> Fmt.invalid_arg "The name %s was used for two or more case0 in variant or enum %s." cname vname) names0; check_unique (fun cname -> Fmt.invalid_arg "The name %s was used for two or more case1 in variant or enum %s." cname vname) names1 let sealv v = let vname, vget, vcases = v [] in check_unique_case_names vname vcases; let vwit = Witness.make () in let vcases = Array.of_list (List.rev vcases) in Variant { vwit; vname; vcases; vget } let ( |~ ) = app type empty = | (* Encode [empty] as a variant with no constructors *) let empty = variant "empty" (fun _ -> assert false) |> sealv let enum vname l = let vwit = Witness.make () in let _, vcases, mk = List.fold_left (fun (ctag0, cases, mk) (n, v) -> check_valid_utf8 n; let c = { ctag0; cname0 = n; c0 = v } in (ctag0 + 1, C0 c :: cases, (v, CV0 c) :: mk)) (0, [], []) l in check_unique_case_names vname vcases; let vcases = Array.of_list (List.rev vcases) in Variant { vwit; vname; vcases; vget = (fun x -> List.assq x mk) } let result a b = variant "result" (fun ok error -> function | Ok x -> ok x | Error x -> error x) |~ case1 "ok" a (fun a -> Ok a) |~ case1 "error" b (fun b -> Error b) |> sealv let either a b = variant "either" (fun left right -> function | Either.Left x -> left x | Either.Right x -> right x) |~ case1 "left" a (fun a -> Either.Left a) |~ case1 "right" b (fun b -> Either.Right b) |> sealv let pre_hash, encode_bin, decode_bin, to_bin_string, of_bin_string = Type_binary.(pre_hash, encode_bin, decode_bin, to_bin_string, of_bin_string) let short_hash = function | Custom c -> stage c.short_hash | t -> let pre_hash = unstage (pre_hash t) in stage @@ fun ?seed x -> let seed = match seed with None -> 0 | Some t -> t in let h = ref seed in pre_hash x (fun s -> h := Hashtbl.seeded_hash !h s); !h exception Unsupported_operation of string let undefined name _ = raise (Unsupported_operation name) type 'a impl = Structural | Custom of 'a | Undefined let fold_impl ~undefined ~structural = function | Custom x -> x | Undefined -> undefined () | Structural -> structural () let partially_abstract ~pp ~of_string ~json ~bin ~unboxed_bin ~equal ~compare ~short_hash:short_hash_t ~pre_hash:pre_hash_t t : _ t = let encode_json, decode_json = fold_impl json ~undefined:(fun () -> (undefined "encode_json", undefined "decode_json")) ~structural:(fun () -> let rec is_prim : type a. a t -> bool = function | Self s -> is_prim s.self_fix | Map m -> is_prim m.x | Prim _ -> true | _ -> false in match (t, pp, of_string) with | ty, Custom pp, Custom of_string when is_prim ty -> let ( >|= ) x f = Result.map f x in let join = function Error _ as e -> e | Ok x -> x in let ty = string in let encode ppf u = Type_json.encode ty ppf (Fmt.to_to_string pp u) in let decode buf = Type_json.decode ty buf >|= of_string |> join in (encode, decode) | _ -> (Type_json.encode t, Type_json.decode t)) in let pp = fold_impl pp ~structural:(fun () -> Type_pp.t t) ~undefined:(fun () -> undefined "pp") in let of_string = fold_impl of_string ~structural:(fun () -> Type_pp.of_string t) ~undefined:(fun () -> undefined "of_string") in let encode_bin, decode_bin, size_of = fold_impl bin ~undefined:(fun () -> (undefined "encode_bin", undefined "decode_bin", unimplemented_size_of)) ~structural:(fun () -> ( unstage (Type_binary.encode_bin t), unstage (Type_binary.decode_bin t), Type_size.t t )) in let unboxed_encode_bin, unboxed_decode_bin, unboxed_size_of = fold_impl unboxed_bin ~undefined:(fun () -> ( undefined "Unboxed.encode_bin", undefined "Unboxed.decode_bin", unimplemented_size_of )) ~structural:(fun () -> ( unstage (Type_binary.Unboxed.encode_bin t), unstage (Type_binary.Unboxed.decode_bin t), Type_size.unboxed t )) in let equal = fold_impl equal ~undefined:(fun () -> undefined "equal") ~structural:(fun () -> unstage (Type_ordered.equal t)) in let compare = fold_impl compare ~undefined:(fun () -> undefined "compare") ~structural:(fun () -> unstage (Type_ordered.compare t)) in let short_hash = fold_impl short_hash_t ~undefined:(fun () ?seed:_ -> undefined "short_hash" ()) ~structural:(fun () -> unstage (short_hash t)) in let pre_hash = fold_impl pre_hash_t ~undefined:(fun () -> undefined "pre_hash") ~structural:(fun () -> encode_bin) in Type_core.Custom { cwit = `Type t; pp; of_string; encode_bin; decode_bin; size_of; compare; equal; short_hash; pre_hash; unboxed_encode_bin; unboxed_decode_bin; unboxed_size_of; } |> annotate ~add:Encode_json.add ~data:encode_json |> annotate ~add:Decode_json.add ~data:decode_json let like ?pp ?of_string ?json ?bin ?unboxed_bin ?equal ?compare ?short_hash ?pre_hash t = let to_impl = function None -> Structural | Some x -> Custom x in let equal = match equal with | Some x -> Custom x | None -> ( match compare with | Some f -> Custom (fun x y -> f x y = 0) | None -> Structural) in let pp = to_impl pp and json = to_impl json and of_string = to_impl of_string and bin = to_impl bin and unboxed_bin = to_impl unboxed_bin and compare = to_impl compare and short_hash = to_impl short_hash and pre_hash = to_impl pre_hash in partially_abstract ~pp ~json ~of_string ~bin ~unboxed_bin ~equal ~compare ~short_hash ~pre_hash t let map ?pp ?of_string ?json ?bin ?unboxed_bin ?equal ?compare ?short_hash ?pre_hash x f g = match (pp, of_string, json, bin, unboxed_bin, equal, compare, short_hash, pre_hash) with | None, None, None, None, None, None, None, None, None -> Map { x; f; g; mwit = Witness.make () } | _ -> let x = Map { x; f; g; mwit = Witness.make () } in like ?pp ?of_string ?json ?bin ?unboxed_bin ?equal ?compare ?short_hash ?pre_hash x module type S = sig type t val t : t ty end let equal, compare = Type_ordered.(equal, compare) let pp, pp_dump, pp_ty, to_string, of_string = Type_pp.(t, dump, ty, to_string, of_string) let ( to_json_string, of_json_string, pp_json, encode_json, decode_json, decode_json_lexemes ) = Type_json.(to_string, of_string, pp, encode, decode_jsonm, decode_lexemes) let random, random_state = Type_random.(of_global, of_state) let size_of t = match (Type_size.t t).of_value with | Size.Static n -> let n = Some n in stage (fun _ -> n) | Size.Dynamic f -> stage (fun x -> Some (f x)) | Size.Unknown -> stage (fun _ -> None) module Size = struct type 'a t = 'a Size.t = Static of int | Dynamic of 'a | Unknown (* The [Size] module defines _scanning_ length decoders that return [initial_offset + length] rather than just [length]. These functions convert these to decoders that return the [length] directly. *) let to_scanning : type a. (a -> int -> int) -> a -> Size.offset -> Size.offset = fun len_f buf (Size.Offset off) -> Size.Offset (off + len_f buf off) let of_scanning : type a. (a -> Size.offset -> Size.offset) -> a -> int -> int = fun scan_f buf off -> let (Size.Offset off') = scan_f buf (Size.Offset off) in off' - off let of_value t = (Type_size.t t).of_value let of_encoding t = Size.map of_scanning (Type_size.unboxed t).of_encoding let t t = Type_size.t t type 'a sizer = 'a size_of let using f t = let of_value = Size.map (fun sizer x -> sizer (f x)) t.Size.Sizer.of_value in { t with of_value } let custom_static n = Size.Sizer.{ of_value = Static n; of_encoding = Static n } let custom_dynamic ?of_value ?of_encoding () = let of_value = match of_value with Some f -> Dynamic f | None -> Unknown in let of_encoding = match of_encoding with | Some f -> Dynamic (to_scanning f) | None -> Unknown in Size.Sizer.{ of_value; of_encoding } end module Unboxed = struct include Type_binary.Unboxed let size_of = Type_size.unboxed end module Json = struct include Json let assoc : type a. a t -> (string * a) list t = fun a -> let json = (Type_json.encode_assoc a, Type_json.decode_assoc a) in list (pair string a) |> like ~json end module Attribute = struct let set_random f ty = annotate ~add:Type_random.Attr.add ~data:f ty end let int63 = let module I = Optint.Int63 in let random : Stdlib.Random.State.t -> I.t = match I.is_immediate with | True -> unstage (random_state int) | False -> let random_int64 = unstage (random_state int64) in fun s -> I.of_int64 (Int64.shift_right (random_int64 s) 1) in like ~pp:I.pp ~equal:I.equal ~compare:I.compare (map int64 I.of_int64 I.to_int64) |> Attribute.set_random random let ref : type a. a t -> a ref t = fun a -> map a ref (fun t -> !t) let lazy_t : type a. a t -> a Lazy.t t = fun a -> map a Lazy.from_val Lazy.force let seq : type a. a t -> a Seq.t t = fun a -> let elt_equal = unstage @@ equal a in let elt_compare = unstage @@ compare a in let rec compare (s1 : a Seq.t) (s2 : a Seq.t) = match (s1 (), s2 ()) with | Nil, Nil -> 0 | Cons _, Nil -> 1 | Nil, Cons _ -> -1 | Cons (x, xf), Cons (y, yf) -> let ord = elt_compare x y in if ord <> 0 then ord else compare xf yf in let rec equal (s1 : a Seq.t) (s2 : a Seq.t) = match (s1 (), s2 ()) with | Nil, Nil -> true | Cons _, Nil | Nil, Cons _ -> false | Cons (x, xf), Cons (y, yf) -> elt_equal x y && equal xf yf in map ~compare ~equal (list a) List.to_seq List.of_seq let stack : type a. a t -> a Stack.t t = (* Built-in [Stack.of_seq] adds elements bottom-to-top, which flips the stack. We must re-flip it afterwards. *) let flip_stack s_rev = let s = Stack.create () in Stack.iter (fun a -> Stack.push a s) s_rev; s in fun a -> map (seq a) (fun s -> Stack.of_seq s |> flip_stack) Stack.to_seq let queue : type a. a t -> a Queue.t t = fun a -> map (seq a) Queue.of_seq Queue.to_seq let hashtbl : type k v. k t -> v t -> (k, v) Hashtbl.t t = fun k v -> map (seq (pair k v)) Hashtbl.of_seq Hashtbl.to_seq let set (type set elt) (module Set : Set.S with type elt = elt and type t = set) (elt : elt t) : set t = map (seq elt) Set.of_seq Set.to_seq module Of_set (Set : sig include Set.S val elt_t : elt ty end) = struct let t = set (module Set) Set.elt_t end module Of_map (Map : sig include Map.S val key_t : key ty end) = struct let t : type v. v t -> v Map.t t = fun v -> map (seq (pair Map.key_t v)) Map.of_seq Map.to_seq end