package repr

  1. Overview
  2. Docs

Source file type.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
(*
 * Copyright (c) 2016-2017 Thomas Gazagnaire <thomas@gazagnaire.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *)

include Type_intf
include Type_core
include Staging
open Utils

(* Combinators for Repr types *)

let unit = Prim Unit
let bool = Prim Bool
let char = Prim Char
let int = Prim Int
let int32 = Prim Int32
let int64 = Prim Int64
let float = Prim Float
let string = Prim (String `Int)
let bytes = Prim (Bytes `Int)
let string_of n = Prim (String n)
let bytes_of n = Prim (Bytes n)
let list ?(len = `Int) v = List { v; len }
let array ?(len = `Int) v = Array { v; len }
let pair a b = Tuple (Pair (a, b))
let triple a b c = Tuple (Triple (a, b, c))
let quad a b c d = Tuple (Quad (a, b, c, d))
let option a = Option a
let boxed t = Boxed t

let abstract ~pp ~of_string ~json ~bin ?unboxed_bin ~equal ~compare ~short_hash
    ~pre_hash () =
  let encode_json, decode_json = json in
  let encode_bin, decode_bin, size_of = bin in
  let unboxed_encode_bin, unboxed_decode_bin, unboxed_size_of =
    match unboxed_bin with None -> bin | Some b -> b
  in
  Custom
    {
      cwit = `Witness (Witness.make ());
      pp;
      of_string;
      pre_hash;
      encode_bin;
      decode_bin;
      size_of;
      compare;
      equal;
      short_hash;
      unboxed_encode_bin;
      unboxed_decode_bin;
      unboxed_size_of;
    }
  |> annotate ~add:Encode_json.add ~data:encode_json
  |> annotate ~add:Decode_json.add ~data:decode_json

(* fix points *)

let mu : type a. (a t -> a t) -> a t =
 fun f ->
  let rec fake_x : a self = { self_unroll = f; self_fix = Self fake_x } in
  let real_x = f (Self fake_x) in
  fake_x.self_fix <- real_x;
  Self fake_x

let mu2 : type a b. (a t -> b t -> a t * b t) -> a t * b t =
 fun f ->
  let rec fake_x =
    let self_unroll a =
      let b = mu (fun b -> f a b |> snd) in
      f a b |> fst
    in
    { self_unroll; self_fix = Self fake_x }
  in
  let rec fake_y =
    let self_unroll b =
      let a = mu (fun a -> f a b |> fst) in
      f a b |> snd
    in
    { self_unroll; self_fix = Self fake_y }
  in
  let real_x, real_y = f (Self fake_x) (Self fake_y) in
  fake_x.self_fix <- real_x;
  fake_y.self_fix <- real_y;
  (Self fake_x, Self fake_y)

(* records *)

type ('a, 'b, 'c) open_record = ('a, 'c) fields -> string * 'b * ('a, 'b) fields

let field fname ftype fget =
  check_valid_utf8 fname;
  { fname; ftype; fget }

let record : string -> 'b -> ('a, 'b, 'b) open_record = fun n c fs -> (n, c, fs)

let app :
    type a b c d.
    (a, b, c -> d) open_record -> (a, c) field -> (a, b, d) open_record =
 fun r f fs ->
  let n, c, fs = r (F1 (f, fs)) in
  (n, c, fs)

module String_Set = Set.Make (String)

(** [check_unique f l] checks that all the strings in [l] are unique. Otherwise,
    calls [f dup] with [dup] the first duplicate. *)
let check_unique f =
  let rec aux set = function
    | [] -> ()
    | x :: xs -> (
        match String_Set.find_opt x set with
        | None -> aux (String_Set.add x set) xs
        | Some _ -> f x)
  in
  aux String_Set.empty

let check_unique_field_names rname rfields =
  let names = List.map (fun (Field { fname; _ }) -> fname) rfields in
  let failure fname =
    Fmt.invalid_arg "The name %s was used for two or more fields in record %s."
      fname rname
  in
  check_unique failure names

let sealr : type a b. (a, b, a) open_record -> a t =
 fun r ->
  let rname, c, fs = r F0 in
  let rwit = Witness.make () in
  let sealed = { rwit; rname; rfields = Fields (fs, c) } in
  check_unique_field_names rname (fields sealed);
  Record sealed

let ( |+ ) = app

(* variants *)

type 'a case_p = 'a case_v
type ('a, 'b) case = int -> 'a a_case * 'b

let case0 cname0 c0 =
  check_valid_utf8 cname0;
  fun ctag0 ->
    let c = { ctag0; cname0; c0 } in
    (C0 c, CV0 c)

let case1 : type a b. string -> b t -> (b -> a) -> (a, b -> a case_p) case =
 fun cname1 ctype1 c1 ->
  check_valid_utf8 cname1;
  fun ctag1 ->
    let cwit1 : b Witness.t = Witness.make () in
    let c = { ctag1; cname1; ctype1; cwit1; c1 } in
    (C1 c, fun v -> CV1 (c, v))

type ('a, 'b, 'c) open_variant = 'a a_case list -> string * 'c * 'a a_case list

let variant n c vs = (n, c, vs)

let app v c cs =
  let n, fc, cs = v cs in
  let c, f = c (List.length cs) in
  (n, fc f, c :: cs)

let check_unique_case_names vname vcases =
  let n0, n1 =
    List.partition (function C0 _ -> true | C1 _ -> false) vcases
  in
  let names0 =
    List.map (function C0 { cname0; _ } -> cname0 | _ -> assert false) n0
  in
  let names1 =
    List.map (function C1 { cname1; _ } -> cname1 | _ -> assert false) n1
  in
  check_unique
    (fun cname ->
      Fmt.invalid_arg
        "The name %s was used for two or more case0 in variant or enum %s."
        cname vname)
    names0;
  check_unique
    (fun cname ->
      Fmt.invalid_arg
        "The name %s was used for two or more case1 in variant or enum %s."
        cname vname)
    names1

let sealv v =
  let vname, vget, vcases = v [] in
  check_unique_case_names vname vcases;
  let vwit = Witness.make () in
  let vcases = Array.of_list (List.rev vcases) in
  Variant { vwit; vname; vcases; vget }

let ( |~ ) = app

type empty = |

(* Encode [empty] as a variant with no constructors *)
let empty = variant "empty" (fun _ -> assert false) |> sealv

let enum vname l =
  let vwit = Witness.make () in
  let _, vcases, mk =
    List.fold_left
      (fun (ctag0, cases, mk) (n, v) ->
        check_valid_utf8 n;
        let c = { ctag0; cname0 = n; c0 = v } in
        (ctag0 + 1, C0 c :: cases, (v, CV0 c) :: mk))
      (0, [], []) l
  in
  check_unique_case_names vname vcases;
  let vcases = Array.of_list (List.rev vcases) in
  Variant { vwit; vname; vcases; vget = (fun x -> List.assq x mk) }

let result a b =
  variant "result" (fun ok error -> function
    | Ok x -> ok x | Error x -> error x)
  |~ case1 "ok" a (fun a -> Ok a)
  |~ case1 "error" b (fun b -> Error b)
  |> sealv

let either a b =
  variant "either" (fun left right -> function
    | Either.Left x -> left x | Either.Right x -> right x)
  |~ case1 "left" a (fun a -> Either.Left a)
  |~ case1 "right" b (fun b -> Either.Right b)
  |> sealv

let pre_hash, encode_bin, decode_bin, to_bin_string, of_bin_string =
  Type_binary.(pre_hash, encode_bin, decode_bin, to_bin_string, of_bin_string)

let short_hash = function
  | Custom c -> stage c.short_hash
  | t ->
      let pre_hash = unstage (pre_hash t) in
      stage @@ fun ?seed x ->
      let seed = match seed with None -> 0 | Some t -> t in
      let h = ref seed in
      pre_hash x (fun s -> h := Hashtbl.seeded_hash !h s);
      !h

exception Unsupported_operation of string

let undefined name _ = raise (Unsupported_operation name)

type 'a impl = Structural | Custom of 'a | Undefined

let fold_impl ~undefined ~structural = function
  | Custom x -> x
  | Undefined -> undefined ()
  | Structural -> structural ()

let partially_abstract ~pp ~of_string ~json ~bin ~unboxed_bin ~equal ~compare
    ~short_hash:short_hash_t ~pre_hash:pre_hash_t t : _ t =
  let encode_json, decode_json =
    fold_impl json
      ~undefined:(fun () -> (undefined "encode_json", undefined "decode_json"))
      ~structural:(fun () ->
        let rec is_prim : type a. a t -> bool = function
          | Self s -> is_prim s.self_fix
          | Map m -> is_prim m.x
          | Prim _ -> true
          | _ -> false
        in
        match (t, pp, of_string) with
        | ty, Custom pp, Custom of_string when is_prim ty ->
            let ( >|= ) x f = Result.map f x in
            let join = function Error _ as e -> e | Ok x -> x in
            let ty = string in
            let encode ppf u =
              Type_json.encode ty ppf (Fmt.to_to_string pp u)
            in
            let decode buf = Type_json.decode ty buf >|= of_string |> join in
            (encode, decode)
        | _ -> (Type_json.encode t, Type_json.decode t))
  in
  let pp =
    fold_impl pp
      ~structural:(fun () -> Type_pp.t t)
      ~undefined:(fun () -> undefined "pp")
  in
  let of_string =
    fold_impl of_string
      ~structural:(fun () -> Type_pp.of_string t)
      ~undefined:(fun () -> undefined "of_string")
  in
  let encode_bin, decode_bin, size_of =
    fold_impl bin
      ~undefined:(fun () ->
        (undefined "encode_bin", undefined "decode_bin", unimplemented_size_of))
      ~structural:(fun () ->
        ( unstage (Type_binary.encode_bin t),
          unstage (Type_binary.decode_bin t),
          Type_size.t t ))
  in
  let unboxed_encode_bin, unboxed_decode_bin, unboxed_size_of =
    fold_impl unboxed_bin
      ~undefined:(fun () ->
        ( undefined "Unboxed.encode_bin",
          undefined "Unboxed.decode_bin",
          unimplemented_size_of ))
      ~structural:(fun () ->
        ( unstage (Type_binary.Unboxed.encode_bin t),
          unstage (Type_binary.Unboxed.decode_bin t),
          Type_size.unboxed t ))
  in
  let equal =
    fold_impl equal
      ~undefined:(fun () -> undefined "equal")
      ~structural:(fun () -> unstage (Type_ordered.equal t))
  in
  let compare =
    fold_impl compare
      ~undefined:(fun () -> undefined "compare")
      ~structural:(fun () -> unstage (Type_ordered.compare t))
  in
  let short_hash =
    fold_impl short_hash_t
      ~undefined:(fun () ?seed:_ -> undefined "short_hash" ())
      ~structural:(fun () -> unstage (short_hash t))
  in
  let pre_hash =
    fold_impl pre_hash_t
      ~undefined:(fun () -> undefined "pre_hash")
      ~structural:(fun () -> encode_bin)
  in
  Type_core.Custom
    {
      cwit = `Type t;
      pp;
      of_string;
      encode_bin;
      decode_bin;
      size_of;
      compare;
      equal;
      short_hash;
      pre_hash;
      unboxed_encode_bin;
      unboxed_decode_bin;
      unboxed_size_of;
    }
  |> annotate ~add:Encode_json.add ~data:encode_json
  |> annotate ~add:Decode_json.add ~data:decode_json

let like ?pp ?of_string ?json ?bin ?unboxed_bin ?equal ?compare ?short_hash
    ?pre_hash t =
  let to_impl = function None -> Structural | Some x -> Custom x in
  let equal =
    match equal with
    | Some x -> Custom x
    | None -> (
        match compare with
        | Some f -> Custom (fun x y -> f x y = 0)
        | None -> Structural)
  in
  let pp = to_impl pp
  and json = to_impl json
  and of_string = to_impl of_string
  and bin = to_impl bin
  and unboxed_bin = to_impl unboxed_bin
  and compare = to_impl compare
  and short_hash = to_impl short_hash
  and pre_hash = to_impl pre_hash in
  partially_abstract ~pp ~json ~of_string ~bin ~unboxed_bin ~equal ~compare
    ~short_hash ~pre_hash t

let map ?pp ?of_string ?json ?bin ?unboxed_bin ?equal ?compare ?short_hash
    ?pre_hash x f g =
  match
    (pp, of_string, json, bin, unboxed_bin, equal, compare, short_hash, pre_hash)
  with
  | None, None, None, None, None, None, None, None, None ->
      Map { x; f; g; mwit = Witness.make () }
  | _ ->
      let x = Map { x; f; g; mwit = Witness.make () } in
      like ?pp ?of_string ?json ?bin ?unboxed_bin ?equal ?compare ?short_hash
        ?pre_hash x

module type S = sig
  type t

  val t : t ty
end

let equal, compare = Type_ordered.(equal, compare)

let pp, pp_dump, pp_ty, to_string, of_string =
  Type_pp.(t, dump, ty, to_string, of_string)

let ( to_json_string,
      of_json_string,
      pp_json,
      encode_json,
      decode_json,
      decode_json_lexemes ) =
  Type_json.(to_string, of_string, pp, encode, decode_jsonm, decode_lexemes)

let random, random_state = Type_random.(of_global, of_state)

let size_of t =
  match (Type_size.t t).of_value with
  | Size.Static n ->
      let n = Some n in
      stage (fun _ -> n)
  | Size.Dynamic f -> stage (fun x -> Some (f x))
  | Size.Unknown -> stage (fun _ -> None)

module Size = struct
  type 'a t = 'a Size.t = Static of int | Dynamic of 'a | Unknown

  (* The [Size] module defines _scanning_ length decoders that return
     [initial_offset + length] rather than just [length]. These functions
     convert these to decoders that return the [length] directly. *)

  let to_scanning : type a. (a -> int -> int) -> a -> Size.offset -> Size.offset
      =
   fun len_f buf (Size.Offset off) -> Size.Offset (off + len_f buf off)

  let of_scanning : type a. (a -> Size.offset -> Size.offset) -> a -> int -> int
      =
   fun scan_f buf off ->
    let (Size.Offset off') = scan_f buf (Size.Offset off) in
    off' - off

  let of_value t = (Type_size.t t).of_value
  let of_encoding t = Size.map of_scanning (Type_size.unboxed t).of_encoding
  let t t = Type_size.t t

  type 'a sizer = 'a size_of

  let using f t =
    let of_value =
      Size.map (fun sizer x -> sizer (f x)) t.Size.Sizer.of_value
    in
    { t with of_value }

  let custom_static n =
    Size.Sizer.{ of_value = Static n; of_encoding = Static n }

  let custom_dynamic ?of_value ?of_encoding () =
    let of_value =
      match of_value with Some f -> Dynamic f | None -> Unknown
    in
    let of_encoding =
      match of_encoding with
      | Some f -> Dynamic (to_scanning f)
      | None -> Unknown
    in
    Size.Sizer.{ of_value; of_encoding }
end

module Unboxed = struct
  include Type_binary.Unboxed

  let size_of = Type_size.unboxed
end

module Json = struct
  include Json

  let assoc : type a. a t -> (string * a) list t =
   fun a ->
    let json = (Type_json.encode_assoc a, Type_json.decode_assoc a) in
    list (pair string a) |> like ~json
end

module Attribute = struct
  let set_random f ty = annotate ~add:Type_random.Attr.add ~data:f ty
end

let int63 =
  let module I = Optint.Int63 in
  let random : Stdlib.Random.State.t -> I.t =
    match I.is_immediate with
    | True -> unstage (random_state int)
    | False ->
        let random_int64 = unstage (random_state int64) in
        fun s -> I.of_int64 (Int64.shift_right (random_int64 s) 1)
  in
  like ~pp:I.pp ~equal:I.equal ~compare:I.compare
    (map int64 I.of_int64 I.to_int64)
  |> Attribute.set_random random

let ref : type a. a t -> a ref t = fun a -> map a ref (fun t -> !t)
let lazy_t : type a. a t -> a Lazy.t t = fun a -> map a Lazy.from_val Lazy.force

let seq : type a. a t -> a Seq.t t =
 fun a ->
  let elt_equal = unstage @@ equal a in
  let elt_compare = unstage @@ compare a in
  let rec compare (s1 : a Seq.t) (s2 : a Seq.t) =
    match (s1 (), s2 ()) with
    | Nil, Nil -> 0
    | Cons _, Nil -> 1
    | Nil, Cons _ -> -1
    | Cons (x, xf), Cons (y, yf) ->
        let ord = elt_compare x y in
        if ord <> 0 then ord else compare xf yf
  in
  let rec equal (s1 : a Seq.t) (s2 : a Seq.t) =
    match (s1 (), s2 ()) with
    | Nil, Nil -> true
    | Cons _, Nil | Nil, Cons _ -> false
    | Cons (x, xf), Cons (y, yf) -> elt_equal x y && equal xf yf
  in
  map ~compare ~equal (list a) List.to_seq List.of_seq

let stack : type a. a t -> a Stack.t t =
  (* Built-in [Stack.of_seq] adds elements bottom-to-top, which flips the stack.
     We must re-flip it afterwards. *)
  let flip_stack s_rev =
    let s = Stack.create () in
    Stack.iter (fun a -> Stack.push a s) s_rev;
    s
  in
  fun a -> map (seq a) (fun s -> Stack.of_seq s |> flip_stack) Stack.to_seq

let queue : type a. a t -> a Queue.t t =
 fun a -> map (seq a) Queue.of_seq Queue.to_seq

let hashtbl : type k v. k t -> v t -> (k, v) Hashtbl.t t =
 fun k v -> map (seq (pair k v)) Hashtbl.of_seq Hashtbl.to_seq

let set (type set elt) (module Set : Set.S with type elt = elt and type t = set)
    (elt : elt t) : set t =
  map (seq elt) Set.of_seq Set.to_seq

module Of_set (Set : sig
  include Set.S

  val elt_t : elt ty
end) =
struct
  let t = set (module Set) Set.elt_t
end

module Of_map (Map : sig
  include Map.S

  val key_t : key ty
end) =
struct
  let t : type v. v t -> v Map.t t =
   fun v -> map (seq (pair Map.key_t v)) Map.of_seq Map.to_seq
end
OCaml

Innovation. Community. Security.