package oseq
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Source file OSeq.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310(** {1 OSeq: Functional Iterators} *) (*$inject [@@@ocaml.warning "-33-5"] let plist f l = "["^String.concat ";" (List.map f l) ^"]" let ppair f1 f2 (x,y) = Printf.sprintf "(%s,%s)" (f1 x)(f2 y) let pint i = string_of_int i let pilist l = plist pint l let pilistlist l = plist (plist pint) l let pi2list l = plist (ppair pint pint) l let pstrlist l = plist (Printf.sprintf "%S") l *) type 'a t = unit -> 'a node and 'a node = 'a Seq.node = | Nil | Cons of 'a * 'a t type 'a seq = 'a t (* alias *) (* compat test, ensure Seq.t and OSeq.t are the same *) (*$inject let () = ignore (Seq.empty : int OSeq.t); ignore (OSeq.empty : int Seq.t) *) type 'a sequence = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a equal = 'a -> 'a -> bool type 'a ord = 'a -> 'a -> int type 'a printer = Format.formatter -> 'a -> unit let empty () = Nil let is_empty l = match l() with Nil -> true | Cons _ -> false let return x () = Cons (x, empty) let cons a b () = Cons (a,b) let rec (--) i j () = if i=j then Cons (i, empty) else if i<j then Cons (i, i+1 -- j) else Cons (i, i-1--j) (*$= & ~printer:pilist [0;1;2;3;4;5] (0-- 5 |> to_list) [0] (0-- 0 |> to_list) [5;4;3;2] (5-- 2 |> to_list) *) let (--^) i j = if i=j then empty else if i<j then i -- (j-1) else i -- (j+1) (*$= & ~printer:pilist [1;2;3;4] (1 --^ 5 |> to_list) [5;4;3;2] (5 --^ 1 |> to_list) [1] (1 --^ 2 |> to_list) [] (0 --^ 0 |> to_list) *) let rec map f l () = match l () with | Nil -> Nil | Cons (x,tail) -> Cons (f x, map f tail) let rec fold_map f acc l () = match l () with | Nil -> Nil | Cons (x, tl) -> let acc = f acc x in Cons (acc, fold_map f acc tl) let rec repeatedly f () = Cons (f(), repeatedly f) let rec repeat x () = Cons (x, repeat x) (*$T repeat 0 |> take 4 |> to_list = [0;0;0;0] repeat 1 |> take 0 |> to_list = [] *) let init ?(n=max_int) f = let rec aux r () = if r >= n then Nil else ( let x = f r in Cons (x, aux (r+1)) ) in aux 0 (*$T init init ~n:5 (fun i->i) |> to_list = [0;1;2;3;4] *) let mapi f l = let rec aux f l i () = match l() with | Nil -> Nil | Cons (x, tl) -> Cons (f i x, aux f tl (i+1)) in aux f l 0 (*$T mapi (fun i x -> i,x) (1 -- 3) |> to_list = [0, 1; 1, 2; 2, 3] *) let rec filter_map f (l:'a t) () = match l() with | Nil -> Nil | Cons (x, l') -> begin match f x with | None -> filter_map f l' () | Some y -> Cons (y, filter_map f l') end (*$T filter_map (fun x -> if x mod 2=0 then Some (x*3) else None) (1--10) |> to_list \ = [6;12;18;24;30] *) let filter f l = let rec aux f l () = match l () with | Nil -> Nil | Cons (x,tl) when f x -> Cons (x, aux f tl) | Cons (_, tl) -> aux f tl () in aux f l let rec append a b () = match a () with | Nil -> b () | Cons (x,tl) -> Cons (x, append tl b) let rec cycle l () = append l (cycle l) () let iterate x f = let rec aux f x () = let y = f x in Cons (x, aux f y) in aux f x (*$T iterate iterate 0 ((+)1) |> take 5 |> to_list = [0;1;2;3;4] *) let rec fold f acc l = match l() with | Nil -> acc | Cons (x,tl) -> fold f (f acc x) tl let fold_left = fold (*$T foldi (foldi (fun i acc x ->(i,x)::acc) [] (of_list ["a"; "b"])) = [1,"b";0,"a"] *) let foldi f acc l = let rec foldi f i acc l = match l() with | Nil -> acc | Cons (x,tl) -> foldi f (succ i) (f i acc x) tl in foldi f 0 acc l let reduce f g = match g() with | Nil -> invalid_arg "reduce" | Cons (x, tl) -> fold f x tl let rec iter f l = match l () with | Nil -> () | Cons (x, l') -> f x; iter f l' let iteri f l = let rec aux f l i = match l() with | Nil -> () | Cons (x, l') -> f i x; aux f l' (i+1) in aux f l 0 let length l = fold (fun acc _ -> acc+1) 0 l (*$T cycle (of_list [1;2]) |> take 5 |> to_list = [1;2;1;2;1] cycle (of_list [1; ~-1]) |> take 100_000 |> fold (+) 0 = 0 *) let rec unfold f acc () = match f acc with | None -> Nil | Some (x, acc') -> Cons (x, unfold f acc') (*$T let f = function 10 -> None | x -> Some (x, x+1) in \ unfold f 0 |> to_list = [0;1;2;3;4;5;6;7;8;9] *) let rec flat_map f l () = match l() with | Nil -> Nil | Cons (x,tl) -> fm_app_ f (f x) tl () and fm_app_ f l l' () = match l () with | Nil -> flat_map f l' () | Cons (x, tl) -> Cons (x, fm_app_ f tl l') (*$Q Q.(pair (fun1 Observable.int (small_list int)) (small_list int)) (fun (f, l) -> \ (of_list l |> flat_map (fun x -> of_list (Q.Fn.apply f x)) |> to_list) \ = CCList.flat_map (Q.Fn.apply f) l) Q.(pair (fun1 Observable.int (small_list int)) (small_list int)) (fun (f, l) -> \ (of_list l |> flat_map (fun x -> of_list (Q.Fn.apply f x)) |> to_list) \ = (of_list l |> map (Q.Fn.apply f) |> map of_list |> flatten |> to_list)) *) let take_nth n g = let rec aux i g () = match g() with | Nil -> Nil | Cons (_, tl) when i>0 -> aux (i-1) tl () | Cons (x, tl) -> assert (i=0); Cons (x, aux (n-1) tl) in aux 0 g let rec nth i l = match l() with | Nil -> raise Not_found | Cons (x, _) when i=0 -> x | Cons (_, tl) -> nth (i-1) tl (*$= nth & ~printer:string_of_int 4 (nth 4 (0--10)) 8 (nth 8 (0--10)) *) (*$T (try ignore (nth 11 (1--10)); false with Not_found -> true) *) let mem ~eq x gen = let rec mem eq x gen = match gen() with | Nil -> false | Cons (y,tl) -> eq x y || mem eq x tl in mem eq x gen let rec for_all p gen = match gen() with | Nil -> true | Cons (x,tl) -> p x && for_all p tl let rec exists p gen = match gen() with | Nil -> false | Cons (x,tl) -> p x || exists p tl let min ~lt gen = match gen () with | Cons (x,tl) -> fold (fun min x -> if lt x min then x else min) x tl | Nil -> invalid_arg "min" (*$T min ~lt:(<) (of_list [1;4;6;0;11; -2]) = ~-2 (try ignore (min ~lt:(<) empty); false with Invalid_argument _ -> true) *) let max ~lt gen = match gen () with | Cons (x,tl) -> fold (fun max x -> if lt max x then x else max) x tl | Nil -> invalid_arg "max" (*$T max ~lt:(<) (of_list [1;4;6;0;11; -2]) = 11 (try ignore (max ~lt:(<) empty); false with Invalid_argument _ -> true) *) let equal ~eq gen1 gen2 = let rec check gen1 gen2 = match gen1(), gen2() with | Nil, Nil -> true | Cons (x1,tl1), Cons (x2,tl2) when eq x1 x2 -> check tl1 tl2 | _ -> false in check gen1 gen2 (*$Q (Q.pair (Q.list Q.small_int)(Q.list Q.small_int)) (fun (l1,l2) -> \ equal ~eq:Pervasives.(=) (of_list l1)(of_list l2) = (l1 = l2)) *) (* [partition p l] returns the elements that satisfy [p], and the elements that do not satisfy [p] *) let partition p gen = filter p gen, filter (fun x -> not (p x)) gen (*$T partition (fun x -> x mod 2 = 0) (1--10) |> \ (fun (x,y)->to_list x, to_list y) = ([2;4;6;8;10], [1;3;5;7;9]) *) let zip_index gen = let rec aux r gen () = match gen() with | Nil -> Nil | Cons (x, tl) -> Cons ((r,x), aux (r+1) tl) in aux 0 gen (*$T zip_index (1--5) |> to_list = [0,1; 1,2; 2,3; 3,4; 4,5] *) let rec map2 f l1 l2 () = match l1(), l2() with | Nil, _ | _, Nil -> Nil | Cons(x1,l1'), Cons(x2,l2') -> Cons (f x1 x2, map2 f l1' l2') let rec fold2 f acc l1 l2 = match l1(), l2() with | Nil, _ | _, Nil -> acc | Cons(x1,l1'), Cons(x2,l2') -> fold2 f (f acc x1 x2) l1' l2' let rec iter2 f l1 l2 = match l1(), l2() with | Nil, _ | _, Nil -> () | Cons(x1,l1'), Cons(x2,l2') -> f x1 x2; iter2 f l1' l2' let rec for_all2 f l1 l2 = match l1(), l2() with | Nil, _ | _, Nil -> true | Cons(x1,l1'), Cons(x2,l2') -> f x1 x2 && for_all2 f l1' l2' let rec exists2 f l1 l2 = match l1(), l2() with | Nil, _ | _, Nil -> false | Cons(x1,l1'), Cons(x2,l2') -> f x1 x2 || exists2 f l1' l2' let rec merge cmp l1 l2 () = match l1(), l2() with | Nil, tl2 -> tl2 | tl1, Nil -> tl1 | Cons(x1,l1'), Cons(x2,l2') -> if cmp x1 x2 < 0 then Cons (x1, merge cmp l1' l2) else Cons (x2, merge cmp l1 l2') let rec zip a b () = match a(), b() with | Nil, _ | _, Nil -> Nil | Cons (x, a'), Cons (y, b') -> Cons ((x,y), zip a' b') let unzip l = let rec first l () = match l() with | Nil -> Nil | Cons ((x,_), tl) -> Cons (x, first tl) and second l () = match l() with | Nil -> Nil | Cons ((_, y), tl) -> Cons (y, second tl) in first l, second l (*$Q Q.(list (pair int int)) (fun l -> \ let l = of_list l in let a, b = unzip l in equal (=) l (zip a b)) *) let compare ~cmp gen1 gen2 : int = let rec aux gen1 gen2 = match gen1(), gen2() with | Nil, Nil -> 0 | Cons (x1,tl1), Cons (x2,tl2) -> let c = cmp x1 x2 in if c <> 0 then c else aux tl1 tl2 | Cons _, Nil -> 1 | Nil, Cons _ -> -1 in aux gen1 gen2 (*$Q (Q.pair (Q.list Q.small_int)(Q.list Q.small_int)) (fun (l1,l2) -> \ let sign x = if x < 0 then -1 else if x=0 then 0 else 1 in \ sign (compare ~cmp:Pervasives.compare (of_list l1)(of_list l2)) = sign (Pervasives.compare l1 l2)) *) let rec find p e = match e () with | Nil -> None | Cons (x,_) when p x -> Some x | Cons (_,tl) -> find p tl (*$T find (fun x -> x>=5) (1--10) = Some 5 find (fun x -> x>5) (1--4) = None *) let rec find_map f e = match e () with | Nil -> None | Cons (x, tl) -> match f x with | None -> find_map f tl | Some _ as res -> res (*$T find_map (fun x -> if x >= 5 then Some (- x) else None) (1--10) = Some (-5) find_map (fun x -> if x > 5 then Some (- x) else None) (1--4) = None find_map (fun _ -> None) (1--10) = None *) let sum e = fold (+) 0 e (*$T sum (1--10) = 55 *) (** {2 Fair Combinations} *) let rec interleave a b () = match a() with | Nil -> b () | Cons (x, tail) -> Cons (x, interleave b tail) let rec fair_flat_map f a () = match a() with | Nil -> Nil | Cons (x, tail) -> let y = f x in interleave y (fair_flat_map f tail) () let rec fair_app f a () = match f() with | Nil -> Nil | Cons (f1, fs) -> interleave (map f1 a) (fair_app fs a) () let rec flatten l () = match l() with | Nil -> Nil | Cons (x,tl) -> flat_app_ x tl () and flat_app_ l l' () = match l () with | Nil -> flatten l' () | Cons (x, tl) -> Cons (x, flat_app_ tl l') let rec take n (l:'a t) () = if n=0 then Nil else match l () with | Nil -> Nil | Cons (x,l') -> Cons (x, take (n-1) l') let rec take_while p l () = match l () with | Nil -> Nil | Cons (x,l') -> if p x then Cons (x, take_while p l') else Nil (*$T of_list [1;2;3;4] |> take_while (fun x->x < 4) |> to_list = [1;2;3] *) let rec drop n (l:'a t) () = match l () with | l' when n=0 -> l' | Nil -> Nil | Cons (_,l') -> drop (n-1) l' () let rec drop_while p l () = match l() with | Nil -> Nil | Cons (x,l') when p x -> drop_while p l' () | Cons _ as res -> res (*$Q (Q.pair (Q.list Q.small_int) Q.small_int) (fun (l,n) -> \ let s = of_list l in let s1, s2 = take n s, drop n s in \ append s1 s2 |> to_list = l ) *) let rec fold_while f acc gen = match gen() with | Nil -> acc | Cons (x, tl) -> let acc, cont = f acc x in match cont with | `Stop -> acc | `Continue -> fold_while f acc tl (*$T fold_while (fun acc b -> if b then acc+1, `Continue else acc, `Stop) 0 \ (of_list [true;true;false;true]) = 2 *) let scan f acc g : _ t = let rec aux f acc g () = match g () with | Nil -> Cons (acc, empty) | Cons (x, tl) -> let acc' = f acc x in Cons (acc, aux f acc' tl) in aux f acc g (*$T scan scan (fun acc x -> x+1::acc) [] (1--5) |> to_list \ = [[]; [2]; [3;2]; [4;3;2]; [5;4;3;2]; [6;5;4;3;2]] *) let unfold_scan f acc g = let rec aux f acc g () = match g() with | Nil -> Nil | Cons (x, tl) -> let acc, res = f acc x in Cons (res, aux f acc tl) in aux f acc g (*$T unfold_scan unfold_scan (fun acc x -> x+acc,acc) 0 (1--5) |> to_list \ = [0; 1; 3; 6; 10] *) let product_with f l1 l2 = let rec next_left l1 l2 () = match l1() with | Nil -> Nil | Cons (x1, tl1) -> append_all ~tl1 ~l2_init:l2 x1 l2 () and append_all ~tl1 ~l2_init x1 l2 () = match l2() with | Nil -> next_left tl1 l2_init () | Cons (x2, tl2) -> Cons (f x1 x2, append_all ~tl1 ~l2_init x1 tl2) in next_left l1 l2 (*$Q Q.(pair (small_list int)(small_list int)) (fun (l1,l2) -> \ let lsort=List.sort Pervasives.compare in \ lsort (List.flatten@@List.map (fun x ->List.map (fun y->x,y) l2)l1) = \ lsort (product (of_list l1)(of_list l2) |> to_list)) *) let product l1 l2 = product_with (fun x y -> x,y) l1 l2 let app fs xs = product_with (fun f x -> f x) fs xs module Infix = struct let (>>=) xs f = flat_map f xs let (>|=) xs f = map f xs let (>>|) xs f = map f xs let (<*>) = app let (>>-) a f = fair_flat_map f a let (<.>) f a = fair_app f a let (--) = (--) let (--^) = (--^) end include Infix let product3 l1 l2 l3 = (fun x1 x2 x3 -> x1,x2,x3) |> return <*> l1 <*> l2 <*> l3 let product4 l1 l2 l3 l4 = (fun x1 x2 x3 x4 -> x1,x2,x3,x4) |> return <*> l1 <*> l2 <*> l3 <*> l4 let product5 l1 l2 l3 l4 l5 = (fun x1 x2 x3 x4 x5 -> x1,x2,x3,x4,x5) |> return <*> l1 <*> l2 <*> l3 <*> l4 <*> l5 let product6 l1 l2 l3 l4 l5 l6 = (fun x1 x2 x3 x4 x5 x6 -> x1,x2,x3,x4,x5,x6) |> return <*> l1 <*> l2 <*> l3 <*> l4 <*> l5 <*> l6 let product7 l1 l2 l3 l4 l5 l6 l7 = (fun x1 x2 x3 x4 x5 x6 x7 -> x1,x2,x3,x4,x5,x6,x7) |> return <*> l1 <*> l2 <*> l3 <*> l4 <*> l5 <*> l6 <*> l7 let rec cartesian_product l () = match l() with | Nil -> Cons ([], empty) | Cons (l1, tail) -> let tail = cartesian_product tail in product_with (fun x tl -> x::tl) l1 tail () (*$inject let ofll l = l |> of_list |> map of_list let cmp_lii_unord l1 l2 : bool = List.sort CCOrd.compare l1 = List.sort CCOrd.compare l2 *) (*$= & ~printer:Q.Print.(list (list int)) ~cmp:cmp_lii_unord [[1;3;4];[1;3;5];[1;3;6];[2;3;4];[2;3;5];[2;3;6]] \ (to_list @@ cartesian_product @@ ofll [[1;2];[3];[4;5;6]]) [] (to_list @@ cartesian_product @@ ofll [[1;2];[];[4;5;6]]) [[]] (to_list @@ cartesian_product empty) [[1;3;4;5;6];[2;3;4;5;6]] \ (to_list @@ cartesian_product @@ ofll [[1;2];[3];[4];[5];[6]]) *) (* cartesian product of lists of lists *) let map_product_l f l = let l = map f l in cartesian_product l let rec group ~eq l () = match l() with | Nil -> Nil | Cons (x, l') -> Cons (cons x (take_while (eq x) l'), group ~eq (drop_while (eq x) l')) (*$T of_list [1;1;1;2;2;3;3;1] |> group ~eq:(=) |> map to_list |> to_list = \ [[1;1;1]; [2;2]; [3;3]; [1]] *) let rec uniq_rec_ eq prev l () = match prev, l() with | _, Nil -> Nil | None, Cons (x, l') -> Cons (x, uniq_rec_ eq (Some x) l') | Some y, Cons (x, l') -> if eq x y then uniq_rec_ eq prev l' () else Cons (x, uniq_rec_ eq (Some x) l') let uniq ~eq l = uniq_rec_ eq None l let chunks n e = let rec aux e () = match e() with | Nil -> Nil | Cons (x,tl) -> let a = Array.make n x in fill a 1 tl and fill a i e = (* fill the array. [i]: current index to fill *) if i = n then Cons (a, aux e) else match e() with | Nil -> Cons (Array.sub a 0 i, empty) (* last array is not full *) | Cons (x, tl) -> a.(i) <- x; fill a (i+1) tl in aux e (*$T chunks 25 (0--100) |> map Array.to_list |> to_list = \ List.map to_list [(0--24); (25--49);(50--74);(75--99);(100--100)] *) (* Put [x] between elements of [enum] *) let intersperse x g = let rec aux_with_sep g () = match g() with | Nil -> Nil | Cons (y, g') -> Cons (x, cons y (aux_with_sep g')) in fun () -> match g() with | Nil -> Nil | Cons (x, g) -> Cons (x, aux_with_sep g) (*$= & ~printer:pilist [] (intersperse 0 empty |> to_list) [1] (intersperse 0 (return 1) |> to_list) [1;0;2;0;3;0;4;0;5] (intersperse 0 (1--5) |> to_list) *) (* functional queue *) module F_queue = struct type 'a t = { hd : 'a list; tl : 'a list; } (** Queue containing elements of type 'a *) let empty = { hd = []; tl = []; } (* invariant: if hd=[], then tl=[] *) let make_ hd tl = match hd with | [] -> {hd=List.rev tl; tl=[] } | _::_ -> {hd; tl; } let list_is_empty = function | [] -> true | _::_ -> false let is_empty q = list_is_empty q.hd let push x q = make_ q.hd (x :: q.tl) let pop_exn q = match q.hd with | [] -> assert (list_is_empty q.tl); invalid_arg "F_queue.pop_exn" | x::hd' -> let q' = make_ hd' q.tl in x, q' end type 'a merge_op = | Merge_from of 'a t | Merge_start of 'a t t let merge gens : _ t = (* recursive function to get next element @param q the already produced generators @param tl the generators still untouched *) let rec next (q:'a merge_op F_queue.t) () = if F_queue.is_empty q then Nil else ( match F_queue.pop_exn q with | Merge_from g, q' -> yield_from g q' | Merge_start gens, q' -> begin match gens() with | Nil -> next q' () | Cons (g, gens') -> let q' = F_queue.push (Merge_start gens') q' in yield_from g q' end ) and yield_from g q = match g() with | Nil -> next q () | Cons (x, g') -> Cons (x, next (F_queue.push (Merge_from g') q)) in let q = F_queue.push (Merge_start gens) F_queue.empty in next q (*$= & ~printer:Q.Print.(list int) [1;2;3;4;5;6;7;8;9] \ (merge (of_list [of_list [1;3;5]; of_list [2;4;6]; of_list [7;8;9]]) \ |> to_list |> List.sort Pervasives.compare) [1;2;3;4;5;6] (merge (of_list [of_list [1;3;6]; of_list [2;5]; of_list [4]]) |> to_list) *) (*$T mem ~eq:(=) (3,5) @@ \ take 20_000 @@ merge @@ \ map (fun i -> iterate 0 succ |> map (fun j -> (i, j))) @@ iterate 0 succ *) (*$R let e = of_list [1--3; 4--6; 7--9] in let e' = merge e in OUnit.assert_equal [1;2;3;4;5;6;7;8;9] (to_list e' |> List.sort Pervasives.compare); *) let intersection ~cmp gen1 gen2 : _ t = let rec next x1 x2 () = match x1, x2 with | Cons (y1,tl1), Cons (y2,tl2) -> let c = cmp y1 y2 in if c = 0 (* equal elements, yield! *) then Cons (y1, fun () -> next (tl1()) (tl2()) ()) else if c < 0 (* drop y1 *) then next (tl1()) x2 () else (* drop y2 *) next x1 (tl2()) () | _ -> Nil in fun () -> next (gen1()) (gen2()) () (*$= & ~printer:pilist [1;2;4;8] (intersection ~cmp:Pervasives.compare \ (of_list [1;1;2;3;4;8]) (of_list [1;2;4;5;6;7;8;9]) |> to_list) *) let rec zip_with f a b () = match a(), b() with | Cons (xa,tla), Cons (xb,tlb) -> Cons (f xa xb, zip_with f tla tlb) | _ -> Nil (*$Q (Q.list Q.small_int) (fun l -> \ zip_with (fun x y->x,y) (of_list l) (of_list l) \ |> unzip |> fst |> to_list = l) *) (*$R let e = zip_with (+) (repeat 1) (4--7) in OUnit.assert_equal [5;6;7;8] (to_list e); *) let sorted_merge ~cmp gen1 gen2 : _ t = let rec next x1 x2 () = match x1, x2 with | Nil, Nil -> Nil | Cons (y1, tl1), Cons (y2, tl2) -> if cmp y1 y2 <= 0 then Cons (y1, next (tl1()) x2) else Cons (y2, next x1 (tl2())) | Cons _, Nil -> x1 | Nil, Cons _ -> x2 in fun () -> next (gen1()) (gen2()) () (*$T sorted_merge ~cmp:Pervasives.compare \ (of_list [1;2;2;3;5;10;100]) (of_list [2;4;5;6;11]) \ |> to_list = [1;2;2;2;3;4;5;5;6;10;11;100] *) let round_robin ?(n=2) gen : _ t list = let rec start i = if i=n then [] else ( let g = take_nth n (drop i gen) in g :: start (i+1) ) in start 0 (*$= & ~printer:pilistlist [[1;4;7;10]; [2;5;8;11]; [3;6;9;12]] \ (round_robin ~n:3 (1--12) |> List.map to_list) *) (*$R round_robin let e = round_robin ~n:2 (1--10) in match e with | [a;b] -> OUnit.assert_equal ~printer:pilist [1;3;5;7;9] (to_list a); OUnit.assert_equal ~printer:pilist [2;4;6;8;10] (to_list b) | _ -> OUnit.assert_failure "wrong list lenght" *) (*$R round_robin let e = round_robin ~n:3 (1 -- 999) in let l = List.map length e in OUnit.assert_equal ~printer:pilist [333;333;333] l; *) (** {2 Combinatorics} *) (* state of the permutation machine. One machine manages one element [x], and depends on a deeper machine [g] that generates permutations of the list minus this element (down to the empty list). The machine can do two things: - insert the element in the current list of [g], at any position - obtain the next list of [g] *) let permutations l = let rec aux n l = match l with | [] -> assert (n=0); return [] | x :: tail -> aux (n-1) tail >>= fun tail -> insert_ x [] tail (* insert [x] in [tail[i…n]] *) and insert_ x left right : _ t = match right with | [] -> return (List.rev (x::left)) | y :: right' -> cons (List.rev_append left (x::right)) (insert_ x (y::left) right') in aux (List.length l) l (*$= permutations & ~printer:pilistlist [[1;2;3]; [1;3;2]; [2;1;3]; [2;3;1]; [3;1;2]; [3;2;1]] \ (permutations CCList.(1--3) |> to_list |> List.sort Pervasives.compare) [[]] (permutations [] |> to_list) [[1]] (permutations [1] |> to_list) *) let combinations n g = assert (n >= 0); let rec make_state n l () = match n, l() with | 0, _ -> Cons ([], empty) | _, Nil -> Nil | _, Cons (x,tail) -> let m1 = make_state (n-1) tail in let m2 = make_state n tail in add x m1 m2 () and add x m1 m2 () = match m1 () with | Nil -> m2 () | Cons (l, m1') -> Cons (x::l, add x m1' m2) in make_state n g (*$= & ~printer:pilistlist [[1;2]; [1;3]; [1;4]; [2;3]; [2;4]; [3;4]] \ (combinations 2 (1--4) |> map (List.sort Pervasives.compare) \ |> to_list |> List.sort Pervasives.compare) [[]] (combinations 0 (1--4) |> to_list) [[1]] (combinations 1 (return 1) |> to_list) *) let power_set g : _ t = let rec make_state l () = match l with | [] -> Cons ([], empty) | x::tail -> let m = make_state tail in add x m () and add x m () = match m () with | Nil -> Nil | Cons (l, m') -> Cons (x :: l, cons l (add x m')) in let l = fold (fun acc x->x::acc) [] g in make_state l (*$= & ~printer:pilistlist [[]; [1]; [1;2]; [1;2;3]; [1;3]; [2]; [2;3]; [3]] \ (power_set (1--3) |> map (List.sort Pervasives.compare) \ |> to_list |> List.sort Pervasives.compare) [[]] (power_set empty |> to_list) [[]; [1]] (power_set (return 1) |> map (List.sort Pervasives.compare) \ |> to_list |> List.sort Pervasives.compare) *) (** {2 Conversions} *) let rec to_rev_list_rec_ acc l = match l() with | Nil -> acc | Cons (x,l') -> to_rev_list_rec_ (x::acc) l' let to_rev_list l = to_rev_list_rec_ [] l let to_list l = let rec direct i (l:'a t) = match l () with | Nil -> [] | _ when i=0 -> List.rev (to_rev_list_rec_ [] l) | Cons (x, f) -> x :: direct (i-1) f in direct 200 l let of_list l = let rec aux l () = match l with | [] -> Nil | x::l' -> Cons (x, aux l') in aux l let of_array ?(start=0) ?len a = let len = match len with Some l -> l | None -> Array.length a - start in let rec aux a i () = if i=len then Nil else Cons (a.(i), aux a (i+1)) in aux a start let to_array l = match l() with | Nil -> [| |] | Cons (x, _) -> let n = length l in let a = Array.make n x in (* need first elem to create [a] *) iteri (fun i x -> a.(i) <- x) l; a (*$Q Q.(array int) (fun a -> of_array a |> to_array = a) *) (*$T of_array [| 1; 2; 3 |] |> to_list = [1;2;3] of_list [1;2;3] |> to_array = [| 1; 2; 3; |] *) let to_buffer buf g = iter (Buffer.add_char buf) g let of_string ?(start=0) ?len s = let len = match len with | None -> String.length s - start | Some n -> assert (n + start < String.length s); n in let rec aux i () = if i >= start + len then Nil else ( let x = s.[i] in Cons (x, aux (i+1)) ) in aux 0 let to_string s = let buf = Buffer.create 16 in to_buffer buf s; Buffer.contents buf (*$Q Q.(pair (list string) string) (fun (s, sep) -> String.concat sep s = concat_string ~sep (of_list s)) *) (*$T concat_string ~sep:"" (of_list [ "a"; "b"; "coucou" ]) = "abcoucou" concat_string ~sep:"random" (return "a") = "a" concat_string ~sep:"," (of_list [ "a"; "b"; "c"; ""; ""; "d" ]) = "a,b,c,,,d" concat_string ~sep:"random" empty = "" *) let concat_string ~sep s = match s() with | Nil -> "" | Cons (x, tl) -> let sep_len = String.length sep in let len = fold (fun len s -> String.length s + sep_len + len) (String.length x) tl in let bytes = Bytes.make len '\000' in let _:int = fold (fun off s -> let slen = String.length s in assert (off+slen <= len); Bytes.unsafe_blit (Bytes.unsafe_of_string s) 0 bytes off slen; if off + slen < len then ( (* not the last chunk *) Bytes.unsafe_blit (Bytes.unsafe_of_string sep) 0 bytes (off + slen) sep_len; off + slen + sep_len ) else ( off + slen )) 0 s in Bytes.unsafe_to_string bytes let rec to_seq res k = match res () with | Nil -> () | Cons (s, f) -> k s; to_seq f k let to_gen l = let l = ref l in fun () -> match !l () with | Nil -> None | Cons (x,l') -> l := l'; Some x type 'a of_gen_state = | Of_gen_thunk of 'a gen | Of_gen_saved of 'a node let of_gen g = let rec consume r () = match !r with | Of_gen_saved cons -> cons | Of_gen_thunk g -> begin match g() with | None -> r := Of_gen_saved Nil; Nil | Some x -> let tl = consume (ref (Of_gen_thunk g)) in let l = Cons (x, tl) in r := Of_gen_saved l; l end in consume (ref (Of_gen_thunk g)) (*$R let g = let n = ref 0 in fun () -> Some (incr n; !n) in let l = of_gen g in assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list); assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list); assert_equal [11;12] (drop 10 l |> take 2 |> to_list); *) let rec of_gen_transient f () = match f() with | None -> Nil | Some x -> Cons (x, of_gen_transient f) let sort ~cmp l = let l = to_list l in of_list (List.sort cmp l) let sort_uniq ~cmp l = let l = to_list l in uniq (fun x y -> cmp x y = 0) (of_list (List.sort cmp l)) let lines g : _ t = let rec aux g buf () = match g() with | Nil -> (* only return a non-empty line *) if Buffer.length buf = 0 then Nil else ( let s = Buffer.contents buf in Buffer.clear buf; Cons (s, empty) ) | Cons (c, tl) -> if c = '\n' then ( let s = Buffer.contents buf in Buffer.clear buf; Cons (s, aux tl buf) ) else ( Buffer.add_char buf c; aux tl buf () ) in aux g (Buffer.create 16) (*$= & ~printer:Q.Print.(list string) ["abc"; "de"; ""] (lines (of_string "abc\nde\n\n") |> to_list) *) let unlines g : _ t = let rec aux g st () = match st with | `Stop -> Nil | `Next -> begin match g() with | Nil -> Nil | Cons ("",tl) -> Cons ('\n', aux tl st) (* empty line *) | Cons (s,tl) -> Cons (s.[0], aux tl (`Consume (s,1))) end | `Consume (s, i) when i=String.length s -> Cons ('\n', aux g `Next) | `Consume (s, i) -> Cons (s.[i], aux g (`Consume (s,i+1))) in aux g `Next (*$Q Q.printable_string (fun s -> \ of_string s |> lines |> unlines |> to_string |> String.trim = String.trim s) *) type 'a memoize = | MemoThunk | MemoSave of 'a node let rec memoize f = let r = ref MemoThunk in fun () -> match !r with | MemoSave l -> l | MemoThunk -> let l = match f() with | Nil -> Nil | Cons (x, tail) -> Cons (x, memoize tail) in r := MemoSave l; l module Generator = struct type 'a t = | Skip | Yield of 'a | Delay of (unit -> 'a t) | Append of 'a t * 'a t let empty = Skip let yield x = Yield x let (>>=) x f = Append (x,Delay f) let delay f = Delay f let run (x:'a t) : 'a seq = let rec aux l () = match l with | [] -> Nil | Skip :: tl -> aux tl () | Yield x :: tl -> Cons (x, aux tl) | Delay f :: tl -> aux (f () :: tl) () | Append (x1, x2) :: tl -> aux (x1 :: x2 :: tl) () in aux [x] end (*$R let naturals = Generator.(let rec aux n = yield n>>= fun () -> aux (n+1) in run (aux 0)) in let naturals' = unfold (fun n -> Some (n,n+1)) 0 in assert_equal ~printer:Q.Print.(list int) (take 100 naturals' |> to_list) (take 100 naturals |> to_list) *) (*$QR Q.(small_list int) (fun l -> let seq = of_list l in let seq2 = let open Generator in let rec aux seq = match seq() with | Nil -> empty | Cons (x, tl) -> yield x >>= fun () -> aux tl in run (aux seq) in equal Pervasives.(=) seq seq2) *) module IO = struct let with_file_in ?(mode=0o644) ?(flags=[]) filename f = let ic = open_in_gen flags mode filename in try let x = f ic in close_in_noerr ic; x with e -> close_in_noerr ic; raise e let with_in ?mode ?flags filename f = with_file_in ?mode ?flags filename (fun ic -> f @@ of_gen @@ (fun () -> try Some (input_char ic) with End_of_file -> None) ) let with_lines ?mode ?flags filename f = with_file_in ?mode ?flags filename (fun ic -> f @@ of_gen @@ fun () -> try Some (input_line ic) with End_of_file -> None ) let with_file_out ?(mode=0o644) ?(flags=[Open_creat;Open_wronly]) filename f = let oc = open_out_gen flags mode filename in try let x = f oc in close_out oc; x with e -> close_out_noerr oc; raise e let write_str ?mode ?flags ?(sep="") filename g = with_file_out ?mode ?flags filename (fun oc -> iteri (fun i s -> if i>0 then output_string oc sep; output_string oc s) g) let write ?mode ?flags filename g = with_file_out ?mode ?flags filename (fun oc -> iter (fun c -> output_char oc c) g ) let write_lines ?mode ?flags filename g = with_file_out ?mode ?flags filename (fun oc -> iter (fun s -> output_string oc s; output_char oc '\n') g ) end module type MONAD = sig type 'a t val return : 'a -> 'a t val (>>=) : 'a t -> ('a -> 'b t) -> 'b t end module Traverse(M : MONAD) = struct open M let map_m f l = let rec aux acc l = match l () with | Nil -> return (of_list (List.rev acc)) | Cons (x,l') -> f x >>= fun x' -> aux (x' :: acc) l' in aux [] l let sequence_m l = map_m (fun x->x) l let rec fold_m f acc l = match l() with | Nil -> return acc | Cons (x,l') -> f acc x >>= fun acc' -> fold_m f acc' l' end let pp ?(sep=",") pp_item fmt l = let rec pp fmt l = match l() with | Nil -> () | Cons (x,l') -> Format.pp_print_string fmt sep; Format.pp_print_cut fmt (); pp_item fmt x; pp fmt l' in match l() with | Nil -> () | Cons (x,l') -> pp_item fmt x; pp fmt l' (* test for compat with seq *) (*$inject module Foo : module type of Seq = OSeq *)