package msat
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Library containing a SAT solver that can be parametrized by a theory
Install
dune-project
Dependency
Authors
Maintainers
Sources
v0.9.1.tar.gz
md5=ba623630b0b8e0edc016079dd214c80b
sha512=51c133cefe8550125e7b1db18549e893bac15663fdd7a9fac87235c07de755f39eab9fc3cfdf6571612fd79b3d5b22f49f459581b480c7349bacddf2618c8a99
doc/src/msat/Internal.ml.html
Source file Internal.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268(* MSAT is free software, using the Apache license, see file LICENSE Copyright 2014 Guillaume Bury Copyright 2014 Simon Cruanes *) module type PLUGIN = sig val mcsat : bool (** Is this a mcsat plugin? *) val has_theory : bool (** Is this a CDCL(T) plugin or mcsat plugin? i.e does it have theories *) include Solver_intf.PLUGIN_MCSAT end let invalid_argf fmt = Format.kasprintf (fun msg -> invalid_arg ("msat: " ^ msg)) fmt module Make(Plugin : PLUGIN) = struct module Term = Plugin.Term module Formula = Plugin.Formula module Value = Plugin.Value type term = Term.t type formula = Formula.t type theory = Plugin.t type lemma = Plugin.proof type value = Value.t (* MCSAT literal *) type lit = { lid : int; term : term; mutable l_level : int; mutable l_idx: int; mutable l_weight : float; mutable assigned : value option; } type var = { vid : int; pa : atom; na : atom; mutable v_fields : int; mutable v_level : int; mutable v_idx: int; (** position in heap *) mutable v_weight : float; (** Weight (for the heap), tracking activity *) mutable v_assignable: lit list option; mutable reason : reason option; } and atom = { aid : int; var : var; neg : atom; lit : formula; mutable is_true : bool; watched : clause Vec.t; } and clause = { cid: int; atoms : atom array; mutable cpremise : premise; mutable activity : float; mutable flags: int; (* bitfield *) } and reason = | Decision | Bcp of clause | Bcp_lazy of clause lazy_t | Semantic (* TODO: remove, replace with user-provided proof trackng device? for pure SAT, [reason] is sufficient *) and premise = | Hyp of lemma | Local | Lemma of lemma | History of clause list | Empty_premise type elt = | E_lit of lit | E_var of var type trail_elt = | Lit of lit | Atom of atom (* Constructors *) module MF = Hashtbl.Make(Formula) module MT = Hashtbl.Make(Term) type st = { t_map: lit MT.t; f_map: var MF.t; vars: elt Vec.t; mutable cpt_mk_var: int; mutable cpt_mk_clause: int; } let create_st ?(size=`Big) () : st = let size_map = match size with | `Tiny -> 8 | `Small -> 16 | `Big -> 4096 in { f_map = MF.create size_map; t_map = MT.create size_map; vars = Vec.create(); cpt_mk_var = 0; cpt_mk_clause = 0; } let nb_elt st = Vec.size st.vars let get_elt st i = Vec.get st.vars i let iter_elt st f = Vec.iter f st.vars let name_of_clause c = match c.cpremise with | Hyp _ -> "H" ^ string_of_int c.cid | Lemma _ -> "T" ^ string_of_int c.cid | Local -> "L" ^ string_of_int c.cid | History _ -> "C" ^ string_of_int c.cid | Empty_premise -> string_of_int c.cid module Lit = struct type t = lit let[@inline] term l = l.term let[@inline] level l = l.l_level let[@inline] assigned l = l.assigned let[@inline] weight l = l.l_weight let make (st:st) (t:term) : t = try MT.find st.t_map t with Not_found -> let res = { lid = st.cpt_mk_var; term = t; l_weight = 1.; l_idx= -1; l_level = -1; assigned = None; } in st.cpt_mk_var <- st.cpt_mk_var + 1; MT.add st.t_map t res; Vec.push st.vars (E_lit res); res let debug_assign fmt v = match v.assigned with | None -> Format.fprintf fmt "" | Some t -> Format.fprintf fmt "@[<hov>@@%d->@ %a@]" v.l_level Value.pp t let pp out v = Term.pp out v.term let debug out v = Format.fprintf out "%d[%a][lit:@[<hov>%a@]]" (v.lid+1) debug_assign v Term.pp v.term end (* some boolean flags for variables, used as masks *) let seen_var = 0b1 let seen_pos = 0b10 let seen_neg = 0b100 let default_pol_true = 0b1000 module Var = struct type t = var let[@inline] level v = v.v_level let[@inline] pos v = v.pa let[@inline] neg v = v.na let[@inline] reason v = v.reason let[@inline] assignable v = v.v_assignable let[@inline] weight v = v.v_weight let[@inline] mark v = v.v_fields <- v.v_fields lor seen_var let[@inline] unmark v = v.v_fields <- v.v_fields land (lnot seen_var) let[@inline] marked v = (v.v_fields land seen_var) <> 0 let[@inline] set_default_pol_true v = v.v_fields <- v.v_fields lor default_pol_true let[@inline] set_default_pol_false v = v.v_fields <- v.v_fields land (lnot default_pol_true) let[@inline] default_pol v = (v.v_fields land default_pol_true) <> 0 let make ?(default_pol=true) (st:st) (t:formula) : var * Solver_intf.negated = let lit, negated = Formula.norm t in try MF.find st.f_map lit, negated with Not_found -> let cpt_double = st.cpt_mk_var lsl 1 in let rec var = { vid = st.cpt_mk_var; pa = pa; na = na; v_fields = 0; v_level = -1; v_idx= -1; v_weight = 0.; v_assignable = None; reason = None; } and pa = { var = var; lit = lit; watched = Vec.create(); neg = na; is_true = false; aid = cpt_double (* aid = vid*2 *) } and na = { var = var; lit = Formula.neg lit; watched = Vec.create(); neg = pa; is_true = false; aid = cpt_double + 1 (* aid = vid*2+1 *) } in MF.add st.f_map lit var; st.cpt_mk_var <- st.cpt_mk_var + 1; if default_pol then set_default_pol_true var; Vec.push st.vars (E_var var); var, negated (* Marking helpers *) let[@inline] clear v = v.v_fields <- 0 let[@inline] seen_both v = (seen_pos land v.v_fields <> 0) && (seen_neg land v.v_fields <> 0) end module Atom = struct type t = atom let[@inline] level a = a.var.v_level let[@inline] var a = a.var let[@inline] neg a = a.neg let[@inline] abs a = a.var.pa let[@inline] formula a = a.lit let[@inline] equal a b = a == b let[@inline] sign a = a == abs a let[@inline] hash a = Hashtbl.hash a.aid let[@inline] compare a b = compare a.aid b.aid let[@inline] reason a = Var.reason a.var let[@inline] id a = a.aid let[@inline] is_true a = a.is_true let[@inline] is_false a = a.neg.is_true let has_value a = is_true a || is_false a let[@inline] seen a = if sign a then (seen_pos land a.var.v_fields <> 0) else (seen_neg land a.var.v_fields <> 0) let[@inline] mark a = let pos = equal a (abs a) in if pos then ( a.var.v_fields <- seen_pos lor a.var.v_fields ) else ( a.var.v_fields <- seen_neg lor a.var.v_fields ) let[@inline] make ?default_pol st lit = let var, negated = Var.make ?default_pol st lit in match negated with | Solver_intf.Negated -> var.na | Solver_intf.Same_sign -> var.pa let pp fmt a = Formula.pp fmt a.lit let pp_a fmt v = if Array.length v = 0 then ( Format.fprintf fmt "∅" ) else ( pp fmt v.(0); if (Array.length v) > 1 then begin for i = 1 to (Array.length v) - 1 do Format.fprintf fmt " ∨ %a" pp v.(i) done end ) (* Complete debug printing *) let pp_sign a = if a == a.var.pa then "+" else "-" let debug_reason fmt = function | n, _ when n < 0 -> Format.fprintf fmt "%%" | n, None -> Format.fprintf fmt "%d" n | n, Some Decision -> Format.fprintf fmt "@@%d" n | n, Some Bcp c -> Format.fprintf fmt "->%d/%s" n (name_of_clause c) | n, Some (Bcp_lazy _) -> Format.fprintf fmt "->%d/<lazy>" n | n, Some Semantic -> Format.fprintf fmt "::%d" n let pp_level fmt a = debug_reason fmt (a.var.v_level, a.var.reason) let debug_value fmt a = if a.is_true then Format.fprintf fmt "T%a" pp_level a else if a.neg.is_true then Format.fprintf fmt "F%a" pp_level a else Format.fprintf fmt "" let debug out a = Format.fprintf out "%s%d[%a][atom:@[<hov>%a@]]" (pp_sign a) (a.var.vid+1) debug_value a Formula.pp a.lit let debug_a out vec = Array.iter (fun a -> Format.fprintf out "%a@ " debug a) vec let debug_l out l = List.iter (fun a -> Format.fprintf out "%a@ " debug a) l module Set = Set.Make(struct type t=atom let compare=compare end) end (* Elements *) module Elt = struct type t = elt let[@inline] of_lit l = E_lit l let[@inline] of_var v = E_var v let[@inline] id = function | E_lit l -> l.lid | E_var v -> v.vid let[@inline] level = function | E_lit l -> l.l_level | E_var v -> v.v_level let[@inline] idx = function | E_lit l -> l.l_idx | E_var v -> v.v_idx let[@inline] weight = function | E_lit l -> l.l_weight | E_var v -> v.v_weight let[@inline] set_level e lvl = match e with | E_lit l -> l.l_level <- lvl | E_var v -> v.v_level <- lvl let[@inline] set_idx e i = match e with | E_lit l -> l.l_idx <- i | E_var v -> v.v_idx <- i let[@inline] set_weight e w = match e with | E_lit l -> l.l_weight <- w | E_var v -> v.v_weight <- w end module Trail_elt = struct type t = trail_elt let[@inline] of_lit l = Lit l let[@inline] of_atom a = Atom a let debug fmt = function | Lit l -> Lit.debug fmt l | Atom a -> Atom.debug fmt a end module Clause = struct type t = clause let make_a = let n = ref 0 in fun ~flags atoms premise -> let cid = !n in incr n; { cid; atoms = atoms; flags; activity = 0.; cpremise = premise} let make ~flags l premise = make_a ~flags (Array.of_list l) premise let empty = make [] (History []) let name = name_of_clause let[@inline] equal c1 c2 = c1.cid = c2.cid let[@inline] hash c = Hashtbl.hash c.cid let[@inline] atoms c = c.atoms let[@inline] atoms_seq c = Iter.of_array c.atoms let[@inline] atoms_l c = Array.to_list c.atoms let flag_attached = 0b1 let flag_visited = 0b10 let flag_removable = 0b100 let flag_dead = 0b1000 let[@inline] make_removable l premise = make ~flags:flag_removable l premise let[@inline] make_removable_a l premise = make_a ~flags:flag_removable l premise let[@inline] make_permanent l premise = make ~flags:0 l premise let[@inline] visited c = (c.flags land flag_visited) <> 0 let[@inline] set_visited c b = if b then c.flags <- c.flags lor flag_visited else c.flags <- c.flags land lnot flag_visited let[@inline] attached c = (c.flags land flag_attached) <> 0 let[@inline] set_attached c b = if b then c.flags <- c.flags lor flag_attached else c.flags <- c.flags land lnot flag_attached let[@inline] removable c = (c.flags land flag_removable) <> 0 let[@inline] set_removable c b = if b then c.flags <- c.flags lor flag_removable else c.flags <- c.flags land lnot flag_removable let[@inline] dead c = (c.flags land flag_dead) <> 0 let[@inline] set_dead c = c.flags <- c.flags lor flag_dead let[@inline] activity c = c.activity let[@inline] set_activity c w = c.activity <- w module Tbl = Hashtbl.Make(struct type t = clause let hash = hash let equal = equal end) let pp fmt c = Format.fprintf fmt "%s : %a" (name c) Atom.pp_a c.atoms let debug_premise out = function | Hyp _ -> Format.fprintf out "hyp" | Lemma _ -> Format.fprintf out "th_lemma" | Local -> Format.fprintf out "local" | History v -> List.iter (fun c -> Format.fprintf out "%s,@ " (name_of_clause c)) v | Empty_premise -> Format.fprintf out "<no premise>" let debug out ({atoms=arr; cpremise=cp;_}as c) = Format.fprintf out "%s@[<hov>{@[<hov>%a@]}@ cpremise={@[<hov>%a@]}@]" (name c) Atom.debug_a arr debug_premise cp end module Proof = struct exception Resolution_error of string type atom = Atom.t type clause = Clause.t type formula = Formula.t type lemma = Plugin.proof let error_res_f msg = Format.kasprintf (fun s -> raise (Resolution_error s)) msg let[@inline] clear_var_of_ (a:atom) = Var.clear a.var (* Compute resolution of 2 clauses. returns [pivots, resulting_atoms] *) let resolve (c1:clause) (c2:clause) : atom list * atom list = (* invariants: only atoms in [c2] are marked, and the pivot is cleared when traversing [c1] *) Array.iter Atom.mark c2.atoms; let pivots = ref [] in let l = Array.fold_left (fun l a -> if Atom.seen a then l else if Atom.seen a.neg then ( pivots := a.var.pa :: !pivots; clear_var_of_ a; l ) else a::l) [] c1.atoms in let l = Array.fold_left (fun l a -> if Atom.seen a then a::l else l) l c2.atoms in Array.iter clear_var_of_ c2.atoms; !pivots, l (* [find_dups c] returns a list of duplicate atoms, and the deduplicated list *) let find_dups (c:clause) : atom list * atom list = let res = Array.fold_left (fun (dups,l) a -> if Atom.seen a then ( a::dups, l ) else ( Atom.mark a; dups, a::l )) ([], []) c.atoms in Array.iter clear_var_of_ c.atoms; res (* do [c1] and [c2] have the same lits, modulo reordering and duplicates? *) let same_lits (c1:atom Iter.t) (c2:atom Iter.t): bool = let subset a b = Iter.iter Atom.mark b; let res = Iter.for_all Atom.seen a in Iter.iter clear_var_of_ b; res in subset c1 c2 && subset c2 c1 let prove conclusion = match conclusion.cpremise with | History [] -> assert false | Empty_premise -> raise Solver_intf.No_proof | _ -> conclusion let rec set_atom_proof a = let aux acc b = if Atom.equal a.neg b then acc else set_atom_proof b :: acc in assert (a.var.v_level >= 0); match (a.var.reason) with | Some (Bcp c | Bcp_lazy (lazy c)) -> Log.debugf 5 (fun k->k "(@[proof.analyze.clause@ :atom %a@ :c %a@])" Atom.debug a Clause.debug c); if Array.length c.atoms = 1 then ( Log.debugf 5 (fun k -> k "(@[proof.analyze.old-reason@ %a@])" Atom.debug a); c ) else ( assert (a.neg.is_true); let r = History (c :: (Array.fold_left aux [] c.atoms)) in let c' = Clause.make_permanent [a.neg] r in a.var.reason <- Some (Bcp c'); Log.debugf 5 (fun k -> k "(@[proof.analyze.new-reason@ :atom %a@ :c %a@])" Atom.debug a Clause.debug c'); c' ) | _ -> error_res_f "cannot prove atom %a" Atom.debug a let prove_unsat conflict = if Array.length conflict.atoms = 0 then ( conflict ) else ( Log.debugf 1 (fun k -> k "(@[sat.prove-unsat@ :from %a@])" Clause.debug conflict); let l = Array.fold_left (fun acc a -> set_atom_proof a :: acc) [] conflict.atoms in let res = Clause.make_permanent [] (History (conflict :: l)) in Log.debugf 1 (fun k -> k "(@[sat.proof-found@ %a@])" Clause.debug res); res ) let prove_atom a = if a.is_true && a.var.v_level = 0 then Some (set_atom_proof a) else None type t = clause and proof_node = { conclusion : clause; step : step; } and step = | Hypothesis of lemma | Assumption | Lemma of lemma | Duplicate of t * atom list | Hyper_res of hyper_res_step and hyper_res_step = { hr_init: t; hr_steps: (atom * t) list; (* list of pivot+clause to resolve against [init] *) } let[@inline] conclusion (p:t) : clause = p type res_step = { rs_res: atom list; rs_c1: clause; rs_c2: clause; rs_pivot: atom; } (* find pivots for resolving [l] with [init], and also return the atoms of the conclusion *) let find_pivots (init:clause) (l:clause list) : _ * (atom * t) list = Log.debugf 15 (fun k->k "(@[proof.find-pivots@ :init %a@ :l %a@])" Clause.debug init (Format.pp_print_list Clause.debug) l); Array.iter Atom.mark init.atoms; let steps = List.map (fun c -> let pivot = match Iter.of_array c.atoms |> Iter.filter (fun a -> Atom.seen (Atom.neg a)) |> Iter.to_list with | [a] -> a | [] -> error_res_f "(@[proof.expand.pivot_missing@ %a@])" Clause.debug c | pivots -> error_res_f "(@[proof.expand.multiple_pivots@ %a@ :pivots %a@])" Clause.debug c Atom.debug_l pivots in Array.iter Atom.mark c.atoms; (* add atoms to result *) clear_var_of_ pivot; Atom.abs pivot, c) l in (* cleanup *) let res = ref [] in let cleanup_a_ a = if Atom.seen a then ( res := a :: !res; clear_var_of_ a ) in Array.iter cleanup_a_ init.atoms; List.iter (fun c -> Array.iter cleanup_a_ c.atoms) l; !res, steps let expand conclusion = Log.debugf 5 (fun k -> k "(@[sat.proof.expand@ @[%a@]@])" Clause.debug conclusion); match conclusion.cpremise with | Lemma l -> { conclusion; step = Lemma l; } | Local -> { conclusion; step = Assumption; } | Hyp l -> { conclusion; step = Hypothesis l; } | History [] -> error_res_f "@[empty history for clause@ %a@]" Clause.debug conclusion | History [c] -> let duplicates, res = find_dups c in assert (same_lits (Iter.of_list res) (Clause.atoms_seq conclusion)); { conclusion; step = Duplicate (c, duplicates) } | History (c :: r) -> let res, steps = find_pivots c r in assert (same_lits (Iter.of_list res) (Clause.atoms_seq conclusion)); { conclusion; step = Hyper_res {hr_init=c; hr_steps=steps}; } | Empty_premise -> raise Solver_intf.No_proof let rec res_of_hyper_res (hr: hyper_res_step) : _ * _ * atom = let {hr_init=c1; hr_steps=l} = hr in match l with | [] -> assert false | [a, c2] -> c1, c2, a (* done *) | (a,c2) :: steps' -> (* resolve [c1] with [c2], then resolve that against [steps] *) let pivots, l = resolve c1 c2 in assert (match pivots with [a'] -> Atom.equal a a' | _ -> false); let c_1_2 = Clause.make_removable l (History [c1; c2]) in res_of_hyper_res {hr_init=c_1_2; hr_steps=steps'} (* Proof nodes manipulation *) let is_leaf = function | Hypothesis _ | Assumption | Lemma _ -> true | Duplicate _ | Hyper_res _ -> false let parents = function | Hypothesis _ | Assumption | Lemma _ -> [] | Duplicate (p, _) -> [p] | Hyper_res {hr_init; hr_steps} -> hr_init :: List.map snd hr_steps let expl = function | Hypothesis _ -> "hypothesis" | Assumption -> "assumption" | Lemma _ -> "lemma" | Duplicate _ -> "duplicate" | Hyper_res _ -> "hyper-resolution" (* Compute unsat-core by accumulating the leaves *) let unsat_core proof = let rec aux res acc = function | [] -> res, acc | c :: r -> if not @@ Clause.visited c then ( Clause.set_visited c true; match c.cpremise with | Empty_premise -> raise Solver_intf.No_proof | Hyp _ | Lemma _ | Local -> aux (c :: res) acc r | History h -> let l = List.fold_left (fun acc c -> if not @@ Clause.visited c then c :: acc else acc) r h in aux res (c :: acc) l ) else ( aux res acc r ) in let res, tmp = aux [] [] [proof] in List.iter (fun c -> Clause.set_visited c false) res; List.iter (fun c -> Clause.set_visited c false) tmp; res module Tbl = Clause.Tbl type task = | Enter of t | Leaving of t let spop s = try Some (Stack.pop s) with Stack.Empty -> None let rec fold_aux s h f acc = match spop s with | None -> acc | Some (Leaving c) -> Tbl.add h c true; fold_aux s h f (f acc (expand c)) | Some (Enter c) -> if not (Tbl.mem h c) then begin Stack.push (Leaving c) s; let node = expand c in begin match node.step with | Duplicate (p1, _) -> Stack.push (Enter p1) s | Hyper_res {hr_init=p1; hr_steps=l} -> List.iter (fun (_,p2) -> Stack.push (Enter p2) s) l; Stack.push (Enter p1) s; | Hypothesis _ | Assumption | Lemma _ -> () end end; fold_aux s h f acc let fold f acc p = let h = Tbl.create 42 in let s = Stack.create () in Stack.push (Enter p) s; fold_aux s h f acc let check_empty_conclusion (p:t) = if Array.length p.atoms > 0 then ( error_res_f "@[<2>Proof.check: non empty conclusion for clause@ %a@]" Clause.debug p; ) let check (p:t) = fold (fun () _ -> ()) () p end type proof = Proof.t module H = (Heap.Make [@specialise]) (struct type t = Elt.t let[@inline] cmp i j = Elt.weight j < Elt.weight i (* comparison by weight *) let idx = Elt.idx let set_idx = Elt.set_idx end) (* cause of "unsat", possibly conditional to local assumptions *) type unsat_cause = | US_local of { first: atom; (* assumption which was found to be proved false *) core: atom list; (* the set of assumptions *) } | US_false of clause (* true unsat *) exception E_sat exception E_unsat of unsat_cause exception UndecidedLit exception Restart exception Conflict of clause (* Log levels *) let error = 1 let warn = 3 let info = 5 let debug = 50 let var_decay : float = 1. /. 0.95 (* inverse of the activity factor for variables. Default 1/0.95 *) let clause_decay : float = 1. /. 0.999 (* inverse of the activity factor for clauses. Default 1/0.999 *) let restart_inc : float = 1.5 (* multiplicative factor for restart limit, default 1.5 *) let learntsize_inc : float = 1.1 (* multiplicative factor for [learntsize_factor] at each restart, default 1.1 *) (* Singleton type containing the current state *) type t = { st : st; th: theory; store_proof: bool; (* do we store proofs? *) (* Clauses are simplified for eficiency purposes. In the following vectors, the comments actually refer to the original non-simplified clause. *) clauses_hyps : clause Vec.t; (* clauses added by the user *) clauses_learnt : clause Vec.t; (* learnt clauses (tautologies true at any time, whatever the user level) *) clauses_to_add : clause Vec.t; (* Clauses either assumed or pushed by the theory, waiting to be added. *) mutable unsat_at_0: clause option; (* conflict at level 0, if any *) mutable next_decisions : atom list; (* When the last conflict was a semantic one (mcsat), this stores the next decision to make; if some theory wants atoms to be decided on (for theory combination), store them here. *) trail : trail_elt Vec.t; (* decision stack + propagated elements (atoms or assignments). *) elt_levels : int Vec.t; (* decision levels in [trail] *) mutable assumptions: atom Vec.t; (* current assumptions *) mutable th_head : int; (* Start offset in the queue {!trail} of unit facts not yet seen by the theory. *) mutable elt_head : int; (* Start offset in the queue {!trail} of unit facts to propagate, within the trail *) (* invariant: - during propagation, th_head <= elt_head - then, once elt_head reaches length trail, Th.assume is called so that th_head can catch up with elt_head - this is repeated until a fixpoint is reached; - before a decision (and after the fixpoint), th_head = elt_head = length trail *) order : H.t; (* Heap ordered by variable activity *) to_clear: var Vec.t; (* variables to unmark *) mutable var_incr : float; (* increment for variables' activity *) mutable clause_incr : float; (* increment for clauses' activity *) mutable on_conflict : (atom array -> unit); } type solver = t (* intial restart limit *) let restart_first = 100 (* initial limit for the number of learnt clauses, 1/3 of initial number of clauses by default *) let learntsize_factor = 1. /. 3. let _nop_on_conflict (_:atom array) = () (* Starting environment. *) let create_ ~st ~store_proof (th:theory) : t = { st; th; unsat_at_0=None; next_decisions = []; clauses_hyps = Vec.create(); clauses_learnt = Vec.create(); clauses_to_add = Vec.create (); to_clear=Vec.create(); th_head = 0; elt_head = 0; trail = Vec.create (); elt_levels = Vec.create(); assumptions= Vec.create(); order = H.create(); var_incr = 1.; clause_incr = 1.; store_proof; on_conflict = _nop_on_conflict; } let create ?(store_proof=true) ?(size=`Big) (th:theory) : t = let st = create_st ~size () in create_ ~st ~store_proof th let[@inline] st t = t.st let[@inline] nb_clauses st = Vec.size st.clauses_hyps let[@inline] decision_level st = Vec.size st.elt_levels (* Do we have a level-0 empty clause? *) let[@inline] check_unsat_ st = match st.unsat_at_0 with | Some c -> raise (E_unsat (US_false c)) | None -> () (* Iteration over subterms. When incrementing activity, we want to be able to iterate over all subterms of a formula. However, the function provided by the theory may be costly (if it walks a tree-like structure, and does some processing to ignore some subterms for instance), so we want to 'cache' the list of subterms of each formula, so we have a field [v_assignable] directly in variables to do so. *) let iter_sub f v = if Plugin.mcsat then ( match v.v_assignable with | Some l -> List.iter f l | None -> assert false ) let mk_atom_mcsat_ st a = match a.var.v_assignable with | Some _ -> () | None -> let l = ref [] in Plugin.iter_assignable st.th (fun t -> l := Lit.make st.st t :: !l) a.var.pa.lit; a.var.v_assignable <- Some !l; () (* When we have a new literal, we need to first create the list of its subterms. *) let mk_atom ?default_pol st (f:formula) : atom = let res = Atom.make ?default_pol st.st f in if Plugin.mcsat then ( mk_atom_mcsat_ st res; ); res (* Variable and literal activity. Activity is used to decide on which variable to decide when propagation is done. Uses a heap (implemented in Iheap), to keep track of variable activity. To be more general, the heap only stores the variable/literal id (i.e an int). When we add a variable (which wraps a formula), we also need to add all its subterms. *) let rec insert_elt_order st (elt:elt) : unit = H.insert st.order elt; if Plugin.mcsat then ( match elt with | E_lit _ -> () | E_var v -> insert_subterms_order st v ) and insert_var_order st (v:var) : unit = insert_elt_order st (E_var v) and insert_subterms_order st (v:var) : unit = iter_sub (fun t -> insert_elt_order st (Elt.of_lit t)) v (* Add new litterals/atoms on which to decide on, even if there is no clause that constrains it. We could maybe check if they have already has been decided before inserting them into the heap, if it appears that it helps performance. *) let make_term st t = let l = Lit.make st.st t in if l.l_level < 0 then ( insert_elt_order st (E_lit l) ) let make_atom st (p:formula) : atom = let a = mk_atom st p in if a.var.v_level < 0 then ( insert_elt_order st (E_var a.var); ) else ( assert (a.is_true || a.neg.is_true); ); a (* Rather than iterate over all the heap when we want to decrease all the variables/literals activity, we instead increase the value by which we increase the activity of 'interesting' var/lits. *) let[@inline] var_decay_activity st = st.var_incr <- st.var_incr *. var_decay let[@inline] clause_decay_activity st = st.clause_incr <- st.clause_incr *. clause_decay (* increase activity of [v] *) let var_bump_activity_aux st v = v.v_weight <- v.v_weight +. st.var_incr; if v.v_weight > 1e100 then ( for i = 0 to nb_elt st.st - 1 do Elt.set_weight (get_elt st.st i) ((Elt.weight (get_elt st.st i)) *. 1e-100) done; st.var_incr <- st.var_incr *. 1e-100; ); let elt = Elt.of_var v in if H.in_heap elt then ( H.decrease st.order elt ) (* increase activity of literal [l] *) let lit_bump_activity_aux (st:t) (l:lit): unit = l.l_weight <- l.l_weight +. st.var_incr; if l.l_weight > 1e100 then ( iter_elt st.st (fun e -> Elt.set_weight e (Elt.weight e *. 1e-100)); st.var_incr <- st.var_incr *. 1e-100; ); let elt = Elt.of_lit l in if H.in_heap elt then ( H.decrease st.order elt ) (* increase activity of var [v] *) let var_bump_activity st (v:var): unit = var_bump_activity_aux st v; iter_sub (lit_bump_activity_aux st) v (* increase activity of clause [c] *) let clause_bump_activity st (c:clause) : unit = c.activity <- c.activity +. st.clause_incr; if c.activity > 1e20 then ( Vec.iter (fun c -> c.activity <- c.activity *. 1e-20) st.clauses_learnt; st.clause_incr <- st.clause_incr *. 1e-20 ) (* Simplification of clauses. When adding new clauses, it is desirable to 'simplify' them, i.e minimize the amount of literals in it, because it greatly reduces the search space for new watched literals during propagation. Additionally, we have to partition the lits, to ensure the watched literals (which are the first two lits of the clause) are appropriate. Indeed, it is better to watch true literals, and then unassigned literals. Watching false literals should be a last resort, and come with constraints (see {!add_clause}). *) exception Trivial (* [arr_to_list a i] converts [a.(i), ... a.(length a-1)] into a list *) let arr_to_list arr i : _ list = if i >= Array.length arr then [] else Array.to_list (Array.sub arr i (Array.length arr - i)) (* Eliminates atom duplicates in clauses *) let eliminate_duplicates clause : clause = let trivial = ref false in let duplicates = ref [] in let res = ref [] in Array.iter (fun a -> if Atom.seen a then duplicates := a :: !duplicates else ( Atom.mark a; res := a :: !res )) clause.atoms; List.iter (fun a -> if Var.seen_both a.var then trivial := true; Var.clear a.var) !res; if !trivial then ( raise Trivial ) else if !duplicates = [] then ( clause ) else ( Clause.make ~flags:clause.flags !res (History [clause]) ) (* Partition literals for new clauses, into: - true literals (maybe makes the clause trivial if the lit is proved true at level 0) - unassigned literals, yet to be decided - false literals (not suitable to watch, those at level 0 can be removed from the clause) Clauses that propagated false lits are remembered to reconstruct resolution proofs. *) let partition atoms : atom list * clause list = let rec partition_aux trues unassigned falses history i = if i >= Array.length atoms then ( trues @ unassigned @ falses, history ) else ( let a = atoms.(i) in if a.is_true then ( let l = a.var.v_level in if l = 0 then raise Trivial (* A var true at level 0 gives a trivially true clause *) else (a :: trues) @ unassigned @ falses @ (arr_to_list atoms (i + 1)), history ) else if a.neg.is_true then ( let l = a.var.v_level in if l = 0 then ( match a.var.reason with | Some (Bcp cl | Bcp_lazy (lazy cl)) -> partition_aux trues unassigned falses (cl :: history) (i + 1) (* A var false at level 0 can be eliminated from the clause, but we need to kepp in mind that we used another clause to simplify it. *) | Some Semantic -> partition_aux trues unassigned falses history (i + 1) (* Semantic propagations at level 0 are, well not easy to deal with, this shouldn't really happen actually (because semantic propagations at level 0 should come with a proof). *) (* TODO: get a proof of the propagation. *) | None | Some Decision -> assert false (* The var must have a reason, and it cannot be a decision/assumption, since its level is 0. *) ) else ( partition_aux trues unassigned (a::falses) history (i + 1) ) ) else ( partition_aux trues (a::unassigned) falses history (i + 1) ) ) in partition_aux [] [] [] [] 0 (* Making a decision. Before actually creatig a new decision level, we check that all propagations have been done and propagated to the theory, i.e that the theoriy state indeed takes into account the whole stack of literals i.e we have indeed reached a propagation fixpoint before making a new decision *) let new_decision_level st = assert (st.th_head = Vec.size st.trail); assert (st.elt_head = Vec.size st.trail); Vec.push st.elt_levels (Vec.size st.trail); Plugin.push_level st.th; () (* Attach/Detach a clause. A clause is attached (to its watching lits) when it is first added, either because it is assumed or learnt. *) let attach_clause c = assert (not @@ Clause.attached c); Log.debugf debug (fun k -> k "(@[sat.attach-clause@ %a@])" Clause.debug c); Vec.push c.atoms.(0).neg.watched c; Vec.push c.atoms.(1).neg.watched c; Clause.set_attached c true; () (* Backtracking. Used to backtrack, i.e cancel down to [lvl] excluded, i.e we want to go back to the state the solver was in when decision level [lvl] was created. *) let cancel_until st lvl = assert (lvl >= 0); (* Nothing to do if we try to backtrack to a non-existent level. *) if decision_level st <= lvl then ( Log.debugf debug (fun k -> k "(@[sat.cancel-until.nop@ :already-at-level <= %d@])" lvl) ) else ( Log.debugf info (fun k -> k "(@[sat.cancel-until %d@])" lvl); (* We set the head of the solver and theory queue to what it was. *) let head = ref (Vec.get st.elt_levels lvl) in st.elt_head <- !head; st.th_head <- !head; (* Now we need to cleanup the vars that are not valid anymore (i.e to the right of elt_head in the queue. *) for c = st.elt_head to Vec.size st.trail - 1 do match (Vec.get st.trail c) with (* A literal is unassigned, we nedd to add it back to the heap of potentially assignable literals, unless it has a level lower than [lvl], in which case we just move it back. *) | Lit l -> if l.l_level <= lvl then ( Vec.set st.trail !head (Trail_elt.of_lit l); head := !head + 1 ) else ( l.assigned <- None; l.l_level <- -1; insert_elt_order st (Elt.of_lit l) ) (* A variable is not true/false anymore, one of two things can happen: *) | Atom a -> if a.var.v_level <= lvl then ( (* It is a late propagation, which has a level lower than where we backtrack, so we just move it to the head of the queue, to be propagated again. *) Vec.set st.trail !head (Trail_elt.of_atom a); head := !head + 1 ) else ( (* it is a result of bolean propagation, or a semantic propagation with a level higher than the level to which we backtrack, in that case, we simply unset its value and reinsert it into the heap. *) a.is_true <- false; a.neg.is_true <- false; a.var.v_level <- -1; a.var.reason <- None; insert_elt_order st (Elt.of_var a.var) ) done; (* Recover the right theory state. *) let n = decision_level st - lvl in assert (n>0); (* Resize the vectors according to their new size. *) Vec.shrink st.trail !head; Vec.shrink st.elt_levels lvl; Plugin.pop_levels st.th n; st.next_decisions <- []; ); () let pp_unsat_cause out = function | US_local {first=_; core} -> Format.fprintf out "(@[unsat-cause@ :false-assumptions %a@])" (Format.pp_print_list Atom.pp) core | US_false c -> Format.fprintf out "(@[unsat-cause@ :false %a@])" Clause.debug c (* Unsatisfiability is signaled through an exception, since it can happen in multiple places (adding new clauses, or solving for instance). *) let report_unsat st (us:unsat_cause) : _ = Log.debugf info (fun k -> k "(@[sat.unsat-conflict@ %a@])" pp_unsat_cause us); let us = match us with | US_false c -> let c = if st.store_proof then Proof.prove_unsat c else c in st.unsat_at_0 <- Some c; US_false c | _ -> us in raise (E_unsat us) (* Simplification of boolean propagation reasons. When doing boolean propagation *at level 0*, it can happen that the clause cl, which propagates a formula, also contains other formulas, but has been simplified. in which case, we need to rebuild a clause with correct history, in order to be able to build a correct proof at the end of proof search. *) let simpl_reason : reason -> reason = function | (Bcp cl | Bcp_lazy (lazy cl)) as r -> let l, history = partition cl.atoms in begin match l with | [_] -> if history = [] then ( (* no simplification has been done, so [cl] is actually a clause with only [a], so it is a valid reason for propagating [a]. *) r ) else ( (* Clauses in [history] have been used to simplify [cl] into a clause [tmp_cl] with only one formula (which is [a]). So we explicitly create that clause and set it as the cause for the propagation of [a], that way we can rebuild the whole resolution tree when we want to prove [a]. *) let c' = Clause.make ~flags:cl.flags l (History (cl :: history)) in Log.debugf debug (fun k -> k "(@[<hv>sat.simplified-reason@ %a@ %a@])" Clause.debug cl Clause.debug c'); Bcp c' ) | _ -> Log.debugf error (fun k -> k "(@[<v2>sat.simplify-reason.failed@ :at %a@ %a@]" (Vec.pp ~sep:"" Atom.debug) (Vec.of_list l) Clause.debug cl); assert false end | (Decision | Semantic) as r -> r (* Boolean propagation. Wrapper function for adding a new propagated formula. *) let enqueue_bool st a ~level:lvl reason : unit = if a.neg.is_true then ( Log.debugf error (fun k->k "(@[sat.error.trying to enqueue a false literal %a@])" Atom.debug a); assert false ); assert (not a.is_true && a.var.v_level < 0 && a.var.reason = None && lvl >= 0); let reason = if lvl > 0 then reason else simpl_reason reason in a.is_true <- true; a.var.v_level <- lvl; a.var.reason <- Some reason; Vec.push st.trail (Trail_elt.of_atom a); Log.debugf debug (fun k->k "(@[sat.enqueue[%d]@ %a@])" (Vec.size st.trail) Atom.debug a); () let enqueue_semantic st a terms = if not a.is_true then ( let l = List.map (Lit.make st.st) terms in let lvl = List.fold_left (fun acc {l_level; _} -> assert (l_level > 0); max acc l_level) 0 l in enqueue_bool st a ~level:lvl Semantic ) (* MCsat semantic assignment *) let enqueue_assign st (l:lit) (value:value) lvl = match l.assigned with | Some _ -> Log.debugf error (fun k -> k "(@[sat.error: Trying to assign an already assigned literal:@ %a@])" Lit.debug l); assert false | None -> assert (l.l_level < 0); l.assigned <- Some value; l.l_level <- lvl; Vec.push st.trail (Trail_elt.of_lit l); Log.debugf debug (fun k -> k "(@[sat.enqueue-semantic[%d]@ %a@])" (Vec.size st.trail) Lit.debug l); () (* swap elements of array *) let[@inline] swap_arr a i j = if i<>j then ( let tmp = a.(i) in a.(i) <- a.(j); a.(j) <- tmp; ) (* move atoms assigned at high levels first *) let put_high_level_atoms_first (arr:atom array) : unit = Array.iteri (fun i a -> if i>0 && Atom.level a > Atom.level arr.(0) then ( (* move first to second, [i]-th to first, second to [i] *) if i=1 then ( swap_arr arr 0 1; ) else ( let tmp = arr.(1) in arr.(1) <- arr.(0); arr.(0) <- arr.(i); arr.(i) <- tmp; ); ) else if i>1 && Atom.level a > Atom.level arr.(1) then ( swap_arr arr 1 i; )) arr (* evaluate an atom for MCsat, if it's not assigned by boolean propagation/decision *) let th_eval st a : bool option = if a.is_true || a.neg.is_true then None else match Plugin.eval st.th a.lit with | Solver_intf.Unknown -> None | Solver_intf.Valued (b, l) -> if l = [] then ( invalid_argf "semantic propagation at level 0 currently forbidden: %a" Atom.pp a; ); let atom = if b then a else a.neg in enqueue_semantic st atom l; Some b (* find which level to backtrack to, given a conflict clause and a boolean stating whether it is a UIP ("Unique Implication Point") precond: the atom list is sorted by decreasing decision level *) let backtrack_lvl _st (arr: atom array) : int * bool = if Array.length arr <= 1 then ( 0, true ) else ( let a = arr.(0) in let b = arr.(1) in assert(a.var.v_level > 0); if a.var.v_level > b.var.v_level then ( (* backtrack below [a], so we can propagate [not a] *) b.var.v_level, true ) else ( assert (a.var.v_level = b.var.v_level); assert (a.var.v_level >= 0); max (a.var.v_level - 1) 0, false ) ) (* result of conflict analysis, containing the learnt clause and some additional info. invariant: cr_history's order matters, as its head is later used during pop operations to determine the origin of a clause/conflict (boolean conflict i.e hypothesis, or theory lemma) *) type conflict_res = { cr_backtrack_lvl : int; (* level to backtrack to *) cr_learnt: atom array; (* lemma learnt from conflict *) cr_history: clause list; (* justification *) cr_is_uip: bool; (* conflict is UIP? *) } let[@inline] get_atom st i = match Vec.get st.trail i with | Atom x -> x | Lit _ -> assert false (* conflict analysis for SAT Same idea as the mcsat analyze function (without semantic propagations), except we look the the Last UIP (TODO: check ?), and do it in an imperative and efficient manner. *) let analyze st c_clause : conflict_res = let pathC = ref 0 in let learnt = ref [] in let cond = ref true in let blevel = ref 0 in let to_unmark = st.to_clear in (* for cleanup *) let c = ref (Some c_clause) in let tr_ind = ref (Vec.size st.trail - 1) in let history = ref [] in assert (decision_level st > 0); Vec.clear to_unmark; let conflict_level = if Plugin.mcsat || Plugin.has_theory then Array.fold_left (fun acc p -> max acc p.var.v_level) 0 c_clause.atoms else decision_level st in Log.debugf debug (fun k -> k "(@[sat.analyze-conflict@ :c-level %d@ :clause %a@])" conflict_level Clause.debug c_clause); while !cond do begin match !c with | None -> Log.debug debug "(@[sat.analyze-conflict: skipping resolution for semantic propagation@])" | Some clause -> Log.debugf debug (fun k->k"(@[sat.analyze-conflict.resolve@ %a@])" Clause.debug clause); if Clause.removable clause then ( clause_bump_activity st clause; ); history := clause :: !history; (* visit the current predecessors *) for j = 0 to Array.length clause.atoms - 1 do let q = clause.atoms.(j) in assert (q.is_true || q.neg.is_true && q.var.v_level >= 0); (* unsure? *) if q.var.v_level <= 0 then ( assert (q.neg.is_true); match q.var.reason with | Some (Bcp cl | Bcp_lazy (lazy cl)) -> history := cl :: !history | Some (Decision | Semantic) | None -> assert false ); if not (Var.marked q.var) then ( Var.mark q.var; Vec.push to_unmark q.var; if q.var.v_level > 0 then ( var_bump_activity st q.var; if q.var.v_level >= conflict_level then ( incr pathC; ) else ( learnt := q :: !learnt; blevel := max !blevel q.var.v_level ) ) ) done end; (* look for the next node to expand *) while let a = Vec.get st.trail !tr_ind in Log.debugf debug (fun k -> k "(@[sat.analyze-conflict.at-trail-elt@ %a@])" Trail_elt.debug a); match a with | Atom q -> (not (Var.marked q.var)) || (q.var.v_level < conflict_level) | Lit _ -> true do decr tr_ind; done; let p = get_atom st !tr_ind in decr pathC; decr tr_ind; match !pathC, p.var.reason with | 0, _ -> cond := false; learnt := p.neg :: List.rev !learnt | n, Some Semantic -> assert (n > 0); learnt := p.neg :: !learnt; c := None | n, Some (Bcp cl | Bcp_lazy (lazy cl)) -> assert (n > 0); assert (p.var.v_level >= conflict_level); c := Some cl | _, (None | Some Decision) -> assert false done; Vec.iter Var.clear to_unmark; Vec.clear to_unmark; (* put high-level literals first, so that: - they make adequate watch lits - the first literal is the UIP, if any *) let a = Array.of_list !learnt in Array.fast_sort (fun p q -> compare q.var.v_level p.var.v_level) a; (* put_high_level_atoms_first a; *) let level, is_uip = backtrack_lvl st a in { cr_backtrack_lvl = level; cr_learnt = a; cr_history = List.rev !history; cr_is_uip = is_uip; } (* add the learnt clause to the clause database, propagate, etc. *) let record_learnt_clause st (confl:clause) (cr:conflict_res): unit = let proof = if st.store_proof then History cr.cr_history else Empty_premise in begin match cr.cr_learnt with | [| |] -> assert false | [|fuip|] -> assert (cr.cr_backtrack_lvl = 0 && decision_level st = 0); if fuip.neg.is_true then ( (* incompatible at level 0 *) report_unsat st (US_false confl) ) else ( let uclause = Clause.make_removable_a cr.cr_learnt proof in (* no need to attach [uclause], it is true at level 0 *) enqueue_bool st fuip ~level:0 (Bcp uclause) ) | _ -> let fuip = cr.cr_learnt.(0) in let lclause = Clause.make_removable_a cr.cr_learnt proof in if Array.length lclause.atoms > 2 then ( Vec.push st.clauses_learnt lclause; (* potentially gc'able *) ); attach_clause lclause; clause_bump_activity st lclause; if cr.cr_is_uip then ( enqueue_bool st fuip ~level:cr.cr_backtrack_lvl (Bcp lclause) ) else ( assert Plugin.mcsat; assert (st.next_decisions = []); st.next_decisions <- [fuip.neg]; ) end; var_decay_activity st; clause_decay_activity st (* process a conflict: - learn clause - backtrack - report unsat if conflict at level 0 *) let add_boolean_conflict st (confl:clause): unit = Log.debugf info (fun k -> k "(@[sat.add-bool-conflict@ %a@])" Clause.debug confl); st.next_decisions <- []; assert (decision_level st >= 0); if decision_level st = 0 || Array.for_all (fun a -> a.var.v_level <= 0) confl.atoms then ( (* Top-level conflict *) report_unsat st (US_false confl); ); let cr = analyze st confl in cancel_until st (max cr.cr_backtrack_lvl 0); record_learnt_clause st confl cr (* Get the correct vector to insert a clause in. *) let[@inline] add_clause_to_vec st c = if Clause.removable c then ( Vec.push st.clauses_learnt c ) else ( Vec.push st.clauses_hyps c ) (* Add a new clause, simplifying, propagating, and backtracking if the clause is false in the current trail *) let add_clause_ st (init:clause) : unit = Log.debugf debug (fun k -> k "(@[sat.add-clause@ @[<hov>%a@]@])" Clause.debug init); (* Insertion of new lits is done before simplification. Indeed, else a lit in a trivial clause could end up being not decided on, which is a bug. *) Array.iter (fun x -> insert_elt_order st (Elt.of_var x.var)) init.atoms; try let c = eliminate_duplicates init in assert (c.flags = init.flags); Log.debugf debug (fun k -> k "(@[sat.dups-removed@ %a@])" Clause.debug c); let atoms, history = partition c.atoms in let clause = if history = [] then ( (* just update order of atoms *) List.iteri (fun i a -> c.atoms.(i) <- a) atoms; c ) else ( let proof = if st.store_proof then History (c::history) else Empty_premise in Clause.make ~flags:c.flags atoms proof ) in assert (clause.flags = init.flags); Log.debugf info (fun k->k "(@[sat.new-clause@ @[<hov>%a@]@])" Clause.debug clause); match atoms with | [] -> report_unsat st @@ US_false clause | [a] -> cancel_until st 0; if a.neg.is_true then ( (* cannot recover from this *) report_unsat st @@ US_false clause ) else if a.is_true then ( () (* atom is already true, nothing to do *) ) else ( Log.debugf debug (fun k->k "(@[sat.add-clause.unit-clause@ :propagating %a@])" Atom.debug a); add_clause_to_vec st clause; enqueue_bool st a ~level:0 (Bcp clause) ) | a::b::_ -> add_clause_to_vec st clause; if a.neg.is_true then ( (* Atoms need to be sorted in decreasing order of decision level, or we might watch the wrong literals. *) put_high_level_atoms_first clause.atoms; attach_clause clause; add_boolean_conflict st clause ) else ( attach_clause clause; if b.neg.is_true && not a.is_true && not a.neg.is_true then ( let lvl = List.fold_left (fun m a -> max m a.var.v_level) 0 atoms in cancel_until st lvl; enqueue_bool st a ~level:lvl (Bcp clause) ) ) with Trivial -> Log.debugf info (fun k->k "(@[sat.add-clause@ :ignore-trivial @[%a@]@])" Clause.debug init) let[@inline never] flush_clauses_ st = while not @@ Vec.is_empty st.clauses_to_add do let c = Vec.pop st.clauses_to_add in add_clause_ st c done let[@inline] flush_clauses st = if not @@ Vec.is_empty st.clauses_to_add then flush_clauses_ st type watch_res = | Watch_kept | Watch_removed (* boolean propagation. [a] is the false atom, one of [c]'s two watch literals [i] is the index of [c] in [a.watched] @return whether [c] was removed from [a.watched] *) let propagate_in_clause st (a:atom) (c:clause) (i:int): watch_res = let atoms = c.atoms in let first = atoms.(0) in if first == a.neg then ( (* false lit must be at index 1 *) atoms.(0) <- atoms.(1); atoms.(1) <- first ) else ( assert (a.neg == atoms.(1)) ); let first = atoms.(0) in if first.is_true then Watch_kept (* true clause, keep it in watched *) else ( try (* look for another watch lit *) for k = 2 to Array.length atoms - 1 do let ak = atoms.(k) in if not (ak.neg.is_true) then ( (* watch lit found: update and exit *) atoms.(1) <- ak; atoms.(k) <- a.neg; (* remove [c] from [a.watched], add it to [ak.neg.watched] *) Vec.push ak.neg.watched c; assert (Vec.get a.watched i == c); Vec.fast_remove a.watched i; raise_notrace Exit ) done; (* no watch lit found *) if first.neg.is_true then ( (* clause is false *) st.elt_head <- Vec.size st.trail; raise_notrace (Conflict c) ) else ( match th_eval st first with | None -> (* clause is unit, keep the same watches, but propagate *) enqueue_bool st first ~level:(decision_level st) (Bcp c) | Some true -> () | Some false -> st.elt_head <- Vec.size st.trail; raise_notrace (Conflict c) ); Watch_kept with Exit -> Watch_removed ) (* propagate atom [a], which was just decided. This checks every clause watching [a] to see if the clause is false, unit, or has other possible watches @param res the optional conflict clause that the propagation might trigger *) let propagate_atom st a : unit = let watched = a.watched in let rec aux i = if i >= Vec.size watched then () else ( let c = Vec.get watched i in assert (Clause.attached c); let j = if Clause.dead c then ( Vec.fast_remove watched i; i ) else ( match propagate_in_clause st a c i with | Watch_kept -> i+1 | Watch_removed -> i (* clause at this index changed *) ) in aux j ) in aux 0 (* Propagation (boolean and theory) *) let create_atom ?default_pol st f = let a = mk_atom ?default_pol st f in ignore (th_eval st a); a exception Th_conflict of Clause.t let slice_get st i = match Vec.get st.trail i with | Atom a -> Solver_intf.Lit a.lit | Lit {term; assigned = Some v; _} -> Solver_intf.Assign (term, v) | Lit _ -> assert false let acts_add_clause st ?(keep=false) (l:formula list) (lemma:lemma): unit = let atoms = List.rev_map (create_atom st) l in let flags = if keep then 0 else Clause.flag_removable in let c = Clause.make ~flags atoms (Lemma lemma) in Log.debugf info (fun k->k "(@[sat.th.add-clause@ %a@])" Clause.debug c); Vec.push st.clauses_to_add c let acts_add_decision_lit (st:t) (f:formula) (sign:bool) : unit = let a = create_atom st f in let a = if sign then a else Atom.neg a in if not (Atom.has_value a) then ( Log.debugf 10 (fun k->k "(@[sat.th.add-decision-lit@ %a@])" Atom.debug a); st.next_decisions <- a :: st.next_decisions ) let acts_raise st (l:formula list) proof : 'a = let atoms = List.rev_map (create_atom st) l in (* conflicts can be removed *) let c = Clause.make_removable atoms (Lemma proof) in Log.debugf 5 (fun k->k "(@[@{<yellow>sat.th.raise-conflict@}@ %a@])" Clause.debug c); raise_notrace (Th_conflict c) let check_consequence_lits_false_ l : unit = match List.find Atom.is_true l with | a -> invalid_argf "slice.acts_propagate:@ Consequence should contain only true literals, but %a isn't" Atom.debug (Atom.neg a) | exception Not_found -> () let acts_propagate (st:t) f = function | Solver_intf.Eval l -> let a = mk_atom st f in enqueue_semantic st a l | Solver_intf.Consequence mk_expl -> let p = mk_atom st f in if Atom.is_true p then () else if Atom.is_false p then ( let lits, proof = mk_expl() in let l = List.rev_map (fun f -> Atom.neg @@ mk_atom st f) lits in check_consequence_lits_false_ l; let c = Clause.make_removable (p :: l) (Lemma proof) in raise_notrace (Th_conflict c) ) else ( insert_var_order st p.var; let c = lazy ( let lits, proof = mk_expl () in let l = List.rev_map (fun f -> Atom.neg @@ mk_atom st f) lits in (* note: we can check that invariant here in the [lazy] block, as conflict analysis will run in an environment where the literals should be true anyway, since it's an extension of the current trail (otherwise the propagated lit would have been backtracked and discarded already.) *) check_consequence_lits_false_ l; Clause.make_removable (p :: l) (Lemma proof) ) in let level = decision_level st in enqueue_bool st p ~level (Bcp_lazy c) ) let[@specialise] acts_iter st ~full head f : unit = for i = (if full then 0 else head) to Vec.size st.trail-1 do let e = match Vec.get st.trail i with | Atom a -> Solver_intf.Lit a.lit | Lit {term; assigned = Some v; _} -> Solver_intf.Assign (term, v) | Lit _ -> assert false in f e done let eval_atom_ a = if Atom.is_true a then Solver_intf.L_true else if Atom.is_false a then Solver_intf.L_false else Solver_intf.L_undefined let[@inline] acts_eval_lit st (f:formula) : Solver_intf.lbool = let a = create_atom st f in eval_atom_ a let[@inline] acts_mk_lit st ?default_pol f : unit = ignore (create_atom ?default_pol st f : atom) let[@inline] acts_mk_term st t : unit = make_term st t let[@inline] current_slice st : _ Solver_intf.acts = { Solver_intf. acts_iter_assumptions=acts_iter st ~full:false st.th_head; acts_eval_lit= acts_eval_lit st; acts_mk_lit=acts_mk_lit st; acts_mk_term=acts_mk_term st; acts_add_clause = acts_add_clause st; acts_propagate = acts_propagate st; acts_raise_conflict=acts_raise st; acts_add_decision_lit=acts_add_decision_lit st; } (* full slice, for [if_sat] final check *) let[@inline] full_slice st : _ Solver_intf.acts = { Solver_intf. acts_iter_assumptions=acts_iter st ~full:true st.th_head; acts_eval_lit= acts_eval_lit st; acts_mk_lit=acts_mk_lit st; acts_mk_term=acts_mk_term st; acts_add_clause = acts_add_clause st; acts_propagate = acts_propagate st; acts_raise_conflict=acts_raise st; acts_add_decision_lit=acts_add_decision_lit st; } (* Assert that the conflict is indeeed a conflict *) let check_is_conflict_ (c:Clause.t) : unit = if not @@ Array.for_all (Atom.is_false) c.atoms then ( invalid_argf "conflict should be false: %a" Clause.debug c ) (* some boolean literals were decided/propagated within Msat. Now we need to inform the theory of those assumptions, so it can do its job. @return the conflict clause, if the theory detects unsatisfiability *) let rec theory_propagate st : clause option = assert (st.elt_head = Vec.size st.trail); assert (st.th_head <= st.elt_head); if st.th_head = st.elt_head then ( None (* fixpoint/no propagation *) ) else ( let slice = current_slice st in st.th_head <- st.elt_head; (* catch up *) match Plugin.partial_check st.th slice with | () -> flush_clauses st; propagate st | exception Th_conflict c -> check_is_conflict_ c; Array.iter (fun a -> insert_elt_order st (Elt.of_var a.var)) c.atoms; Some c ) (* fixpoint between boolean propagation and theory propagation @return a conflict clause, if any *) and propagate (st:t) : clause option = (* First, treat the stack of lemmas added by the theory, if any *) flush_clauses st; (* Now, check that the situation is sane *) assert (st.elt_head <= Vec.size st.trail); if st.elt_head = Vec.size st.trail then ( theory_propagate st ) else ( match while st.elt_head < Vec.size st.trail do begin match Vec.get st.trail st.elt_head with | Lit _ -> () | Atom a -> propagate_atom st a end; st.elt_head <- st.elt_head + 1; done; with | () -> theory_propagate st | exception Conflict c -> Some c ) (* compute unsat core from assumption [a] *) let analyze_final (self:t) (a:atom) : atom list = Log.debugf 5 (fun k->k "(@[sat.analyze-final@ :lit %a@])" Atom.debug a); assert (Atom.is_false a); let core = ref [a] in let idx = ref (Vec.size self.trail - 1) in Var.mark a.var; let seen = ref [a.var] in while !idx >= 0 do begin match Vec.get self.trail !idx with | Lit _ -> () (* semantic decision, ignore *) | Atom a' -> if Var.marked a'.var then ( match Atom.reason a' with | Some Semantic -> () | Some Decision -> core := a' :: !core | Some (Bcp c | Bcp_lazy (lazy c)) -> Array.iter (fun a -> let v = a.var in if not @@ Var.marked v then ( seen := v :: !seen; Var.mark v; )) c.atoms | None -> () ); end; decr idx done; List.iter Var.unmark !seen; Log.debugf 5 (fun k->k "(@[sat.analyze-final.done@ :core %a@])" (Format.pp_print_list Atom.debug) !core); !core (* remove some learnt clauses. *) let reduce_db (st:t) (n_of_learnts: int) : unit = let v = st.clauses_learnt in Log.debugf 3 (fun k->k "(@[sat.gc.start :keep %d :out-of %d@])" n_of_learnts (Vec.size v)); assert (Vec.size v > n_of_learnts); (* sort by decreasing activity *) Vec.sort v (fun c1 c2 -> compare c2.activity c1.activity); let n_collected = ref 0 in while Vec.size v > n_of_learnts do let c = Vec.pop v in assert (Clause.removable c); Clause.set_dead c; assert (Clause.dead c); incr n_collected; done; Log.debugf 3 (fun k->k "(@[sat.gc.done :collected %d@])" !n_collected); () (* Decide on a new literal, and enqueue it into the trail *) let rec pick_branch_aux st atom : unit = let v = atom.var in if v.v_level >= 0 then ( assert (v.pa.is_true || v.na.is_true); pick_branch_lit st ) else if Plugin.mcsat then ( match Plugin.eval st.th atom.lit with | Solver_intf.Unknown -> new_decision_level st; let current_level = decision_level st in enqueue_bool st atom ~level:current_level Decision | Solver_intf.Valued (b, l) -> let a = if b then atom else atom.neg in enqueue_semantic st a l ) else ( new_decision_level st; let current_level = decision_level st in enqueue_bool st atom ~level:current_level Decision ) and pick_branch_lit st = match st.next_decisions with | atom :: tl -> st.next_decisions <- tl; pick_branch_aux st atom | [] when decision_level st < Vec.size st.assumptions -> (* use an assumption *) let a = Vec.get st.assumptions (decision_level st) in if Atom.is_true a then ( new_decision_level st; (* pseudo decision level, [a] is already true *) pick_branch_lit st ) else if Atom.is_false a then ( (* root conflict, find unsat core *) let core = analyze_final st a in raise (E_unsat (US_local {first=a; core})) ) else ( pick_branch_aux st a ) | [] -> begin match H.remove_min st.order with | E_lit l -> if Lit.level l >= 0 then ( pick_branch_lit st ) else ( let value = Plugin.assign st.th l.term in new_decision_level st; let current_level = decision_level st in enqueue_assign st l value current_level ) | E_var v -> pick_branch_aux st (if Var.default_pol v then v.pa else v.na) | exception Not_found -> raise_notrace E_sat end (* do some amount of search, until the number of conflicts or clause learnt reaches the given parameters *) let search (st:t) n_of_conflicts n_of_learnts : unit = Log.debugf 3 (fun k->k "(@[sat.search@ :n-conflicts %d@ :n-learnt %d@])" n_of_conflicts n_of_learnts); let conflictC = ref 0 in while true do match propagate st with | Some confl -> (* Conflict *) incr conflictC; (* When the theory has raised Unsat, add_boolean_conflict might 'forget' the initial conflict clause, and only add the analyzed backtrack clause. So in those case, we use add_clause to make sure the initial conflict clause is also added. *) if Clause.attached confl then ( add_boolean_conflict st confl ) else ( add_clause_ st confl ); st.on_conflict confl.atoms; | None -> (* No Conflict *) assert (st.elt_head = Vec.size st.trail); assert (st.elt_head = st.th_head); if n_of_conflicts > 0 && !conflictC >= n_of_conflicts then ( Log.debug info "(sat.restarting)"; cancel_until st 0; raise_notrace Restart ); (* if decision_level() = 0 then simplify (); *) if n_of_learnts > 0 && Vec.size st.clauses_learnt - Vec.size st.trail > n_of_learnts then ( reduce_db st n_of_learnts; ); pick_branch_lit st done let eval_level (_st:t) (a:atom) = let lvl = a.var.v_level in if Atom.is_true a then ( assert (lvl >= 0); true, lvl ) else if Atom.is_false a then ( false, lvl ) else ( raise UndecidedLit ) let[@inline] eval st lit = fst @@ eval_level st lit let[@inline] unsat_conflict st = st.unsat_at_0 let model (st:t) : (term * value) list = let opt = function Some a -> a | None -> assert false in Vec.fold (fun acc e -> match e with | Lit v -> (v.term, opt v.assigned) :: acc | Atom _ -> acc) [] st.trail (* fixpoint of propagation and decisions until a model is found, or a conflict is reached *) let solve_ (st:t) : unit = Log.debugf 5 (fun k->k "(@[sat.solve :assms %d@])" (Vec.size st.assumptions)); check_unsat_ st; try flush_clauses st; (* add initial clauses *) let n_of_conflicts = ref (float_of_int restart_first) in let n_of_learnts = ref ((float_of_int (nb_clauses st)) *. learntsize_factor) in while true do begin try search st (int_of_float !n_of_conflicts) (int_of_float !n_of_learnts) with | Restart -> n_of_conflicts := !n_of_conflicts *. restart_inc; n_of_learnts := !n_of_learnts *. learntsize_inc | E_sat -> assert (st.elt_head = Vec.size st.trail && Vec.is_empty st.clauses_to_add && st.next_decisions=[]); begin match Plugin.final_check st.th (full_slice st) with | () -> if st.elt_head = Vec.size st.trail && Vec.is_empty st.clauses_to_add && st.next_decisions = [] then ( raise_notrace E_sat ); (* otherwise, keep on *) flush_clauses st; | exception Th_conflict c -> check_is_conflict_ c; Array.iter (fun a -> insert_elt_order st (Elt.of_var a.var)) c.atoms; Log.debugf info (fun k -> k "(@[sat.theory-conflict-clause@ %a@])" Clause.debug c); st.on_conflict c.atoms; Vec.push st.clauses_to_add c; flush_clauses st; end; end done with E_sat -> () let assume st cnf lemma = List.iter (fun l -> let atoms = List.rev_map (mk_atom st) l in let c = Clause.make_permanent atoms (Hyp lemma) in Log.debugf debug (fun k -> k "(@[sat.assume-clause@ @[<hov 2>%a@]@])" Clause.debug c); Vec.push st.clauses_to_add c) cnf (* Check satisfiability *) let check_clause c = let res = Array.exists (fun a -> a.is_true) c.atoms in if not res then ( Log.debugf debug (fun k -> k "(@[sat.check-clause@ :not-satisfied @[<hov>%a@]@])" Clause.debug c); false ) else true let check_vec v = Vec.for_all check_clause v let check st : bool = Vec.is_empty st.clauses_to_add && check_vec st.clauses_hyps && check_vec st.clauses_learnt let[@inline] theory st = st.th (* Unsafe access to internal data *) let hyps env = env.clauses_hyps let history env = env.clauses_learnt let trail env = env.trail (* Result type *) type res = | Sat of (term,Formula.t,value) Solver_intf.sat_state | Unsat of (atom,clause,Proof.t) Solver_intf.unsat_state let pp_all st lvl status = Log.debugf lvl (fun k -> k "(@[<v>sat.full-state :res %s - Full summary:@,@[<hov 2>Trail:@\n%a@]@,\ @[<hov 2>Hyps:@\n%a@]@,@[<hov 2>Lemmas:@\n%a@]@,@]@." status (Vec.pp ~sep:"" Trail_elt.debug) (trail st) (Vec.pp ~sep:"" Clause.debug) (hyps st) (Vec.pp ~sep:"" Clause.debug) (history st) ) let mk_sat (st:t) : (Term.t, Formula.t, _) Solver_intf.sat_state = pp_all st 99 "SAT"; let t = trail st in let iter_trail f f' = Vec.iter (function | Atom a -> f (Atom.formula a) | Lit l -> f' l.term) t in let[@inline] eval f = eval st (mk_atom st f) in let[@inline] eval_level f = eval_level st (mk_atom st f) in { Solver_intf. eval; eval_level; iter_trail; model = (fun () -> model st); } let mk_unsat (st:t) (us: unsat_cause) : _ Solver_intf.unsat_state = pp_all st 99 "UNSAT"; let unsat_assumptions () = match us with | US_local {first=_; core} -> core | _ -> [] in let unsat_conflict = match us with | US_false c -> fun() -> c | US_local {core=[]; _} -> assert false | US_local {first; core} -> let c = lazy ( let core = List.rev core in (* increasing trail order *) assert (Atom.equal first @@ List.hd core); let proof_of (a:atom) = match Atom.reason a with | Some (Decision | Semantic) -> Clause.make_removable [a] Local | Some (Bcp c | Bcp_lazy (lazy c)) -> c | None -> assert false in let other_lits = List.filter (fun a -> not (Atom.equal a first)) core in let hist = Clause.make_permanent [first] Local :: proof_of first :: List.map proof_of other_lits in Clause.make_permanent [] (History hist) ) in fun () -> Lazy.force c in let get_proof () = let c = unsat_conflict () in Proof.prove c in { Solver_intf.unsat_conflict; get_proof; unsat_assumptions; } let add_clause_a st c lemma : unit = try let c = Clause.make_a ~flags:0 c (Hyp lemma) in add_clause_ st c with | E_unsat (US_false c) -> st.unsat_at_0 <- Some c let add_clause st c lemma : unit = try let c = Clause.make_permanent c (Hyp lemma) in add_clause_ st c with | E_unsat (US_false c) -> st.unsat_at_0 <- Some c let solve ?on_conflict ?(assumptions=[]) (st:t) : res = cancel_until st 0; Vec.clear st.assumptions; List.iter (Vec.push st.assumptions) assumptions; begin match on_conflict with | None -> () | Some f -> st.on_conflict <- f; end; try solve_ st; st.on_conflict <- _nop_on_conflict; Sat (mk_sat st) with E_unsat us -> st.on_conflict <- _nop_on_conflict; Unsat (mk_unsat st us) let true_at_level0 st a = try let b, lev = eval_level st a in b && lev = 0 with UndecidedLit -> false let[@inline] eval_atom _st a : Solver_intf.lbool = eval_atom_ a let export (st:t) : clause Solver_intf.export = let hyps = hyps st in let history = history st in {Solver_intf.hyps; history; } end [@@inline][@@specialise] module Void_ = struct type t = Solver_intf.void let equal _ _ = assert false let hash _ = assert false let pp _ _ = assert false end module Make_cdcl_t(Plugin : Solver_intf.PLUGIN_CDCL_T) = Make(struct include Plugin module Term = Void_ module Value = Void_ let eval _ _ = Solver_intf.Unknown let assign _ t = t let mcsat = false let has_theory = true let iter_assignable _ _ _ = () end) [@@inline][@@specialise] module Make_mcsat(Plugin : Solver_intf.PLUGIN_MCSAT) = Make(struct include Plugin let mcsat = true let has_theory = false end) [@@inline][@@specialise] module Make_pure_sat(Plugin : Solver_intf.PLUGIN_SAT) = Make(struct module Formula = Plugin.Formula module Term = Void_ module Value = Void_ type t = unit type proof = Plugin.proof let push_level () = () let pop_levels _ _ = () let partial_check () _ = () let final_check () _ = () let eval () _ = Solver_intf.Unknown let assign () t = t let mcsat = false let has_theory = false let iter_assignable () _ _ = () let mcsat = false end) [@@inline][@@specialise]
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>