To focus the search input from anywhere on the page, press the 'S' key.
in-package search v0.1.0
Legend:
Library
Module
Module type
Parameter
Class
Class type
Library
Module
Module type
Parameter
Class
Class type
type ('a, 'cmuadd, 'cmumult) distribute_left_lemma = Prims.unit
type ('a, 'cmuadd, 'cmumult) distribute_right_lemma = Prims.unit
type ('a, 'cmuadd, 'cmumult) mult_zero_l_lemma = Prims.unit
type ('a, 'cmuadd, 'opp) add_opp_r_lemma = Prims.unit
type !'a cr =
| CR of 'a FStar_Algebra_CommMonoid.cm * 'a FStar_Algebra_CommMonoid.cm * 'a -> 'a * Prims.unit * Prims.unit * Prims.unit
val uu___is_CR : 'a cr -> Prims.bool
val __proj__CR__item__cm_add : 'a cr -> 'a FStar_Algebra_CommMonoid.cm
val __proj__CR__item__cm_mult : 'a cr -> 'a FStar_Algebra_CommMonoid.cm
val __proj__CR__item__opp : 'a cr -> 'a -> 'a
type index = Prims.nat
val uu___is_Nil_var : varlist -> Prims.bool
val uu___is_Cons_var : varlist -> Prims.bool
type !'a canonical_sum =
| Nil_monom
| Cons_monom of 'a * varlist * 'a canonical_sum
| Cons_varlist of varlist * 'a canonical_sum
val uu___is_Nil_monom : 'a canonical_sum -> Prims.bool
val uu___is_Cons_monom : 'a canonical_sum -> Prims.bool
val __proj__Cons_monom__item___0 : 'a canonical_sum -> 'a
val __proj__Cons_monom__item___1 : 'a canonical_sum -> varlist
val __proj__Cons_monom__item___2 : 'a canonical_sum -> 'a canonical_sum
val uu___is_Cons_varlist : 'a canonical_sum -> Prims.bool
val __proj__Cons_varlist__item___0 : 'a canonical_sum -> varlist
val __proj__Cons_varlist__item___1 : 'a canonical_sum -> 'a canonical_sum
val varlist_lt : varlist -> varlist -> Prims.bool
val canonical_sum_merge :
'a cr ->
'a canonical_sum ->
'a canonical_sum ->
'a canonical_sum
val csm_aux :
'a cr ->
'a ->
varlist ->
'a canonical_sum ->
'a canonical_sum ->
'a canonical_sum
val monom_insert :
'a cr ->
'a ->
varlist ->
'a canonical_sum ->
'a canonical_sum
val varlist_insert : 'a cr -> varlist -> 'a canonical_sum -> 'a canonical_sum
val canonical_sum_scalar : 'a cr -> 'a -> 'a canonical_sum -> 'a canonical_sum
val canonical_sum_scalar2 :
'a cr ->
varlist ->
'a canonical_sum ->
'a canonical_sum
val canonical_sum_scalar3 :
'a cr ->
'a ->
varlist ->
'a canonical_sum ->
'a canonical_sum
val canonical_sum_prod :
'a cr ->
'a canonical_sum ->
'a canonical_sum ->
'a canonical_sum
type !'a spolynomial =
| SPvar of index
| SPconst of 'a
| SPplus of 'a spolynomial * 'a spolynomial
| SPmult of 'a spolynomial * 'a spolynomial
val uu___is_SPvar : 'a spolynomial -> Prims.bool
val __proj__SPvar__item___0 : 'a spolynomial -> index
val uu___is_SPconst : 'a spolynomial -> Prims.bool
val __proj__SPconst__item___0 : 'a spolynomial -> 'a
val uu___is_SPplus : 'a spolynomial -> Prims.bool
val __proj__SPplus__item___0 : 'a spolynomial -> 'a spolynomial
val __proj__SPplus__item___1 : 'a spolynomial -> 'a spolynomial
val uu___is_SPmult : 'a spolynomial -> Prims.bool
val __proj__SPmult__item___0 : 'a spolynomial -> 'a spolynomial
val __proj__SPmult__item___1 : 'a spolynomial -> 'a spolynomial
val spolynomial_normalize : 'a cr -> 'a spolynomial -> 'a canonical_sum
val canonical_sum_simplify : 'a cr -> 'a canonical_sum -> 'a canonical_sum
val spolynomial_simplify : 'a cr -> 'a spolynomial -> 'a canonical_sum
type !'a vmap = (FStar_Reflection_Data.var * 'a) Prims.list * 'a
val update : FStar_Reflection_Data.var -> 'a -> 'a vmap -> 'a vmap
val ics_aux : 'a cr -> 'a vmap -> 'a -> 'a canonical_sum -> 'a
val interp_cs : 'a cr -> 'a vmap -> 'a canonical_sum -> 'a
val interp_sp : 'a cr -> 'a vmap -> 'a spolynomial -> 'a
type !'a polynomial =
| Pvar of index
| Pconst of 'a
| Pplus of 'a polynomial * 'a polynomial
| Pmult of 'a polynomial * 'a polynomial
| Popp of 'a polynomial
val uu___is_Pvar : 'a polynomial -> Prims.bool
val __proj__Pvar__item___0 : 'a polynomial -> index
val uu___is_Pconst : 'a polynomial -> Prims.bool
val __proj__Pconst__item___0 : 'a polynomial -> 'a
val uu___is_Pplus : 'a polynomial -> Prims.bool
val __proj__Pplus__item___0 : 'a polynomial -> 'a polynomial
val __proj__Pplus__item___1 : 'a polynomial -> 'a polynomial
val uu___is_Pmult : 'a polynomial -> Prims.bool
val __proj__Pmult__item___0 : 'a polynomial -> 'a polynomial
val __proj__Pmult__item___1 : 'a polynomial -> 'a polynomial
val uu___is_Popp : 'a polynomial -> Prims.bool
val __proj__Popp__item___0 : 'a polynomial -> 'a polynomial
val polynomial_normalize : 'a cr -> 'a polynomial -> 'a canonical_sum
val polynomial_simplify : 'a cr -> 'a polynomial -> 'a canonical_sum
val spolynomial_of : 'a cr -> 'a polynomial -> 'a spolynomial
val interp_p : 'a cr -> 'a vmap -> 'a polynomial -> 'a
val ddump :
Prims.string ->
FStar_Tactics_Types.proofstate ->
Prims.unit FStar_Tactics_Result.__result
val find_aux :
Prims.nat ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term Prims.list ->
Prims.nat FStar_Pervasives_Native.option
val make_fvar :
FStar_Reflection_Types.term ->
(FStar_Reflection_Types.term ->
FStar_Tactics_Types.proofstate ->
'a FStar_Tactics_Result.__result) ->
FStar_Reflection_Types.term Prims.list ->
'a vmap ->
FStar_Tactics_Types.proofstate ->
('a polynomial * FStar_Reflection_Types.term Prims.list * 'a vmap)
FStar_Tactics_Result.__result
val reification_aux :
(FStar_Reflection_Types.term ->
FStar_Tactics_Types.proofstate ->
'a FStar_Tactics_Result.__result) ->
FStar_Reflection_Types.term Prims.list ->
'a vmap ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
FStar_Tactics_Types.proofstate ->
('a polynomial * FStar_Reflection_Types.term Prims.list * 'a vmap)
FStar_Tactics_Result.__result
val steps : FStar_Pervasives.norm_step Prims.list
val canon_norm :
Prims.unit ->
FStar_Tactics_Types.proofstate ->
Prims.unit FStar_Tactics_Result.__result
val reification :
(FStar_Reflection_Types.term ->
FStar_Tactics_Types.proofstate ->
'a FStar_Tactics_Result.__result) ->
('a ->
FStar_Tactics_Types.proofstate ->
FStar_Reflection_Types.term FStar_Tactics_Result.__result) ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
'a ->
FStar_Reflection_Types.term Prims.list ->
FStar_Tactics_Types.proofstate ->
('a polynomial Prims.list * 'a vmap) FStar_Tactics_Result.__result
val quote_polynomial :
FStar_Reflection_Types.term ->
('a ->
FStar_Tactics_Types.proofstate ->
FStar_Reflection_Types.term FStar_Tactics_Result.__result) ->
'a polynomial ->
FStar_Tactics_Types.proofstate ->
FStar_Reflection_Types.term FStar_Tactics_Result.__result
val canon_semiring_aux :
FStar_Reflection_Types.term ->
(FStar_Reflection_Types.term ->
FStar_Tactics_Types.proofstate ->
'a FStar_Tactics_Result.__result) ->
('a ->
FStar_Tactics_Types.proofstate ->
FStar_Reflection_Types.term FStar_Tactics_Result.__result) ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
FStar_Reflection_Types.term ->
'a ->
FStar_Tactics_Types.proofstate ->
Prims.unit FStar_Tactics_Result.__result
val canon_semiring :
'a cr ->
FStar_Tactics_Types.proofstate ->
Prims.unit FStar_Tactics_Result.__result
val int_semiring :
Prims.unit ->
FStar_Tactics_Types.proofstate ->
Prims.unit FStar_Tactics_Result.__result
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>