To focus the search input from anywhere on the page, press the 'S' key.
in-package search v0.1.0
Legend:
Library
Module
Module type
Parameter
Class
Class type
Library
Module
Module type
Parameter
Class
Class type
type expr =
| Lit of Prims.int
| Atom of Prims.nat * FStar_Reflection_Types.term
| Plus of expr * expr
| Mult of expr * expr
| Minus of expr * expr
| Land of expr * expr
| Lxor of expr * expr
| Lor of expr * expr
| Ladd of expr * expr
| Lsub of expr * expr
| Shl of expr * expr
| Shr of expr * expr
| Neg of expr
| Udiv of expr * expr
| Umod of expr * expr
| MulMod of expr * expr
| NatToBv of expr
val uu___is_Lit : expr -> Prims.bool
val uu___is_Atom : expr -> Prims.bool
val __proj__Atom__item___1 : expr -> FStar_Reflection_Types.term
val uu___is_Plus : expr -> Prims.bool
val uu___is_Mult : expr -> Prims.bool
val uu___is_Minus : expr -> Prims.bool
val uu___is_Land : expr -> Prims.bool
val uu___is_Lxor : expr -> Prims.bool
val uu___is_Lor : expr -> Prims.bool
val uu___is_Ladd : expr -> Prims.bool
val uu___is_Lsub : expr -> Prims.bool
val uu___is_Shl : expr -> Prims.bool
val uu___is_Shr : expr -> Prims.bool
val uu___is_Neg : expr -> Prims.bool
val uu___is_Udiv : expr -> Prims.bool
val uu___is_Umod : expr -> Prims.bool
val uu___is_MulMod : expr -> Prims.bool
val uu___is_NatToBv : expr -> Prims.bool
val uu___is_C_Lt : connective -> Prims.bool
val uu___is_C_Eq : connective -> Prims.bool
val uu___is_C_Gt : connective -> Prims.bool
val uu___is_C_Ne : connective -> Prims.bool
val uu___is_CompProp : prop -> Prims.bool
val __proj__CompProp__item___1 : prop -> connective
val uu___is_AndProp : prop -> Prims.bool
val uu___is_OrProp : prop -> Prims.bool
val uu___is_NotProp : prop -> Prims.bool
type st = Prims.nat * FStar_Reflection_Types.term Prims.list
type !'a tm =
st ->
FStar_Tactics_Types.proofstate ->
(Prims.string, 'a * st) FStar_Pervasives.either FStar_Tactics_Result.__result
val return : 'a -> 'a tm
val lift :
('a -> FStar_Tactics_Types.proofstate -> 'b FStar_Tactics_Result.__result) ->
'a ->
'b tm
val find_idx :
('a -> Prims.bool) ->
'a Prims.list ->
(Prims.nat * 'a) FStar_Pervasives_Native.option
val atom : FStar_Reflection_Types.term -> expr tm
val fail : Prims.string -> 'a tm
type (!'a, 'p) refined_list_t = 'a Prims.list
val list_unref : 'a Prims.list -> 'a Prims.list
val as_arith_expr : FStar_Reflection_Types.term -> expr tm
val is_arith_expr : FStar_Reflection_Types.term -> expr tm
val is_arith_prop : FStar_Reflection_Types.term -> prop tm
val run_tm :
'a tm ->
FStar_Tactics_Types.proofstate ->
(Prims.string, 'a) FStar_Pervasives.either FStar_Tactics_Result.__result
val expr_to_string : expr -> Prims.string
val compare_expr : expr -> expr -> FStar_Order.order
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>