package bisect_ppx

  1. Overview
  2. Docs

Source file instrument.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
(* This file is part of Bisect_ppx, released under the MIT license. See
   LICENSE.md for details, or visit
   https://github.com/aantron/bisect_ppx/blob/master/LICENSE.md. *)



(* Overview

   This is the core of Bisect_ppx: the instrumenter that runs on ASTs is defined
   here. The instrumenter is divided into two major pieces:

   1. The class [instrumenter] traverses ASTs. It decides where instrumentation
      should be inserted.
   2. The module [Generated_code] provides the helpers that actually insert the
      instrumentation. In other words, they insert new leaves into the AST at
      the places chosen by [instrumenter].

   The code is structured to strongly reflect this division. It is recommended
   to read this file with code folding.

   Instrumented locations are called {e points}. When the instrumentation code
   is executed, the point is {e visited}. Points appear as highlighted
   characters in coverage reports.

   All state is contained within instances of [instrumenter].

   Instances are actually created in [register.ml], which is the "top-level"
   side-effecting module of Bisect_ppx, when Bisect_ppx used as a PPX library
   (i.e. by PPX drivers).

   When Bisect_ppx is used as a standalone executable PPX, the top-level entry
   point is in [bisect_ppx.ml]. It's basically a PPX driver that registers only
   this instrumenter with itself, using [register.ml], and then runs it. *)



module Parsetree = Ppxlib.Parsetree
module Location = Ppxlib.Location
module Ast_builder = Ppxlib.Ast_builder
module Longident = Ppxlib.Longident

module Pat = Ppxlib.Ast_helper.Pat
module Exp = Ppxlib.Ast_helper.Exp
module Str = Ppxlib.Ast_helper.Str
module Cl = Ppxlib.Ast_helper.Cl
module Cf = Ppxlib.Ast_helper.Cf



(* Can be removed once Bisect_ppx requires OCaml >= 4.08. *)
module Option =
struct
  let map f = function
    | Some v -> Some (f v)
    | None -> None
end



module Coverage_attributes :
sig
  val recognize : Parsetree.attribute -> [ `None | `On | `Off | `Exclude_file ]
  val has_off_attribute : Parsetree.attributes -> bool
  val has_exclude_file_attribute : Parsetree.structure -> bool
end =
struct
  let recognize {Parsetree.attr_name; attr_payload; attr_loc} =
    if attr_name.txt <> "coverage" then
      `None
    else
      match attr_payload with
      | Parsetree.PStr [%str off] ->
        `Off
      | PStr [%str on] ->
        `On
      | PStr [%str exclude_file] ->
        `Exclude_file
      | _ ->
        Location.raise_errorf ~loc:attr_loc "Bad payload in coverage attribute."

  let has_off_attribute attributes =
    (* Don't short-circuit the search, because we want to error-check all
       attributes. *)
    List.fold_left
      (fun found_off attribute ->
        match recognize attribute with
        | `None ->
          found_off
        | `Off ->
          true
        | `On ->
          Location.raise_errorf
            ~loc:attribute.attr_loc "coverage on is not allowed here."
        | `Exclude_file ->
          (* The only place where [@@@coverage exclude_file] is allowed is the
             top-level module of the file. However, if it is there, it will
             already have been found by a prescan, Bisect will not be
             instrumenting the file, and this function [has_off_attribute] won't
             be called. So, if this function ever finds this attribute, it is in
             a nested module, or elsewhere where it is not allowed. *)
          Location.raise_errorf
            ~loc:attribute.attr_loc
            "coverage exclude_file is not allowed here.")
      false attributes

  let has_exclude_file_attribute structure =
    structure |>
    List.exists (function
      | {Parsetree.pstr_desc = Pstr_attribute attribute; _}
        when recognize attribute = `Exclude_file -> true
      | _ -> false)
end



let bisect_file = ref None

let bisect_silent = ref None

let bisect_sigterm = ref false

module Generated_code :
sig
  type points

  val init : unit -> points

  val instrument_expr :
    points ->
    ?override_loc:Location.t ->
    ?use_loc_of:Parsetree.expression ->
    ?at_end:bool ->
    ?post:bool ->
    Parsetree.expression ->
      Parsetree.expression

  val instrument_cases :
    points -> ?use_aliases:bool -> Parsetree.case list ->
      Parsetree.case list
      * Parsetree.case list
      * Parsetree.value_binding list
      * bool

  val runtime_initialization :
    points -> string -> Parsetree.structure_item list
end =
struct
  type points = {
    mutable offsets : int list;
    mutable count : int;
  }

  let init () = {
    offsets = [];
    count = 0;
  }

  (* Given an AST for an expression [e], replaces it by the sequence expression
     [instrumentation; e], where [instrumentation] is some code that tells
     Bisect_ppx, at runtime, that [e] has been visited. *)
  let instrument_expr
      points ?override_loc ?use_loc_of ?(at_end = false) ?(post = false) e =

    let rec outline () =
      let loc = choose_location_of_point ~override_loc ~use_loc_of e in
      if expression_should_not_be_instrumented ~point_loc:loc ~use_loc_of then
        e
      else
        let point_index = get_index_of_point_at_location ~point_loc:loc in
        let open Parsetree in
        if not post then
          [%expr
            ___bisect_visit___ [%e point_index];
            [%e e]]
        else
          [%expr
            ___bisect_post_visit___ [%e point_index] [%e e]]

    and choose_location_of_point ~override_loc ~use_loc_of e =
      match use_loc_of with
      | Some e -> Parsetree.(e.pexp_loc)
      | None ->
        match override_loc with
        | Some override_loc -> override_loc
        | _ -> Parsetree.(e.pexp_loc)

    and expression_should_not_be_instrumented ~point_loc:loc ~use_loc_of =
      let e =
        match use_loc_of with
        | Some e -> e
        | None -> e
      in
      Location.(loc.loc_ghost) ||
      Coverage_attributes.has_off_attribute e.pexp_attributes

    and get_index_of_point_at_location ~point_loc:loc =
      let point_offset =
        if not at_end then
          Location.(Lexing.(loc.loc_start.pos_cnum))
        else
          Location.(Lexing.(loc.loc_end.pos_cnum - 1))
      in
      let point =
        let rec find_point points offset index offsets =
          match offsets with
          | offset'::_ when offset' = offset -> index
          | _::rest -> find_point points offset (index - 1) rest
          | [] ->
            let index = points.count in
            points.offsets <- offset::points.offsets;
            points.count <- points.count + 1;
            index
        in
        find_point points point_offset (points.count - 1) points.offsets
      in
      Ast_builder.Default.eint ~loc point

    in

    outline ()

  (* Instruments a case, as found in [match] and [function] expressions. Cases
     contain patterns.

     Bisect_ppx treats or-patterns specially. For example, suppose you have

       match foo with
       | A -> bar
       | B -> baz

     Both [bar] and [baz] get separate instrumentation points, so that if [A]
     is passed, but [B] is never passed, during testing, you will know that [B]
     was not tested with.

     However, if you refactor to use an or-pattern,

       match foo with
       | A | B -> bar

     and nothing is special is done, the instrumentation point on [bar] covers
     both [A] and [B], so you lose the information that [B] is not tested.

     The fix for this is a bit tricky, because patterns are not expressions. So,
     they can't be instrumented directly. Bisect_ppx instead inserts a special
     secondary [match] expression right in front of [bar]:

       match foo with
       | A | B as ___bisect_matched_value___ ->
         (match ___bisect_matched_value___ with
         | A -> visited "A"
         | B -> visited "B");
         bar

     So, Bisect_ppx takes that or-pattern [A | B], rotates the "or" out to the
     top level (it already is there), splits it into indepedent cases, and
     creates a new [match] expression out of them, that allows it to
     distinguish, after the fact, which branch was actually taken to reach
     [bar].

     There are actually several complications to this. The first is that the
     generated [match] expression is generally not exhaustive: it only includes
     the patterns from the case for which it was generated. This is solved by
     adding a catch-all case, and locally suppressing a bunch of warnings:

       match foo with
       | A | B as ___bisect_matched_value___ ->
         (match ___bisect_matched_value___ with
         | A -> visited "A"
         | B -> visited "B"
         | _ (* for C, D, which can't happen here *) -> ())
           [@ocaml.warning "..."];
         bar
       | C | D as ___bisect_matched_value___ ->
         (match ___bisect_matched_value___ with
         | C -> visited "C"
         | D -> visited "D"
         | _ (* for A, B, which can't happen here *) -> ())
           [@ocaml.warning "..."];;
         baz

      Next, or-patterns might not be at the top level:

        match foo with
        | C (A | B) -> bar

      has to become

        match foo with
        | C (A | B) as ___bisect_matched_value___ ->
          (match ___bisect_matched_value___ with
          | C A -> visited "A"
          | C B -> visited "B"
          | _ -> ());
          bar

      This is done by "rotating" the or-pattern to the top level. In this
      example, [C (A | B)] is equivalent to [C A | C B]. The latter pattern can
      easily be split into cases. This could also be done by aliasing individual
      or-patterns, but we did not investigate it.

      There might be multiple or-patterns:

        match foo with
        | C (A | B), D (A | B) -> bar

      should become

        match foo with
        | C (A | B), D (A | B) as ___bisect_matched_value___ ->
          (match ___bisect_matched_value___ with
          | C A, D A -> visited "A1"; visited "A2"
          | C A, D B -> visited "A1"; visited "B2"
          | C B, D A -> visited "B1"; visited "A2"
          | C B, D B -> visited "B1"; visited "B2"
          | _ -> ());
          bar

      as you can see, or-patterns under and-like patterns (tuples, arrays,
      records) get multiplied combinatorially.

      The above example also shows that Bisect_ppx needs to mark visisted a
      whole list of points in each of the generated cases. For that, the
      function that rotates or-patterns to the top level also keeps track of the
      original locations of each case of each or-pattern. Each of the resulting
      top-level patterns is paired with the list of locations of the or-cases it
      contains, visualised above as ["A1"; "A2"], ["A1"; "B2"], etc. These are
      termed *location traces*.

      Finally, there are some corner cases. First is the exception pattern:

        match foo with
        | exception (Exit | Failure _) -> bar

      should become

        match foo with
        | exception ((Exit | Failure _) as ___bisect_matched_value___) ->
          (match ___bisect_matched_value___ with
          | Exit -> visited "Exit"
          | Failure _ -> visited "Failure"
          | _ -> ());
          bar

      note that the [as] alias is attached to the payload of [exception], not to
      the outer pattern! The latter would be syntactically invalid. Also, we
      don't want to generate [exception] cases in the nested [match]: the
      exception has already been caught, we are not re-raising and re-catching
      it, which just need to know which constructor it was. To deal with this,
      we just need to check for the [exception] pattern, and work on its inside
      if it is present.

      The last corner case is the trivial one. If there no or-patterns, there is
      no point in generating a nested [match]:

        match foo with
        | A as ___bisect_matched_value___ ->
          (match ___bisect_matched_value___ with
          | A -> visited "A"   (* totally redundant *)
          | _ -> ());
          bar

      It's enough to just do

        match foo with
        | A -> visited "A"; bar

      which is pretty much just normal expression instrumentation, though with
      location overridden to the location of the pattern.

      This is detected when there is only one case after rotating all
      or-patterns to the top. If there had been an or-pattern, there would be at
      least two cases after rotation.

      Handling or-patterns is the most challening thing done here. There are a
      few simpler things to consider:

      - Pattern guards ([when] clauses) should be instrumented if present.
      - We don't instrument [assert false] cases.
      - We also don't instrument refutation cases ([| -> .]).

      So, without further ado, here is the function that does all this magic: *)

  let is_assert_false_or_refutation (case : Parsetree.case) =
    match case.pc_rhs with
    | [%expr assert false] -> true
    | {pexp_desc = Pexp_unreachable; _} -> true
    | _ -> false

  let insert_instrumentation points (case : Parsetree.case) f =
    match case.pc_guard with
    | None ->
      {case with
        pc_rhs = f case.pc_rhs;
      }
    | Some guard ->
      {case with
        pc_guard = Some (f guard);
        pc_rhs = instrument_expr points case.pc_rhs;
      }

  let instrumentation_for_location_trace points location_trace e =
    location_trace
    |> List.sort_uniq (fun l l' ->
      l.Location.loc_start.Lexing.pos_cnum -
      l'.Location.loc_start.Lexing.pos_cnum)
    |> List.fold_left (fun e l ->
      instrument_expr points ~override_loc:l e) e

  let add_bisect_matched_value_alias loc p =
    let open Parsetree in
    [%pat? [%p p] as ___bisect_matched_value___]

  let generate_nested_match points loc rotated_cases =
    rotated_cases
    |> List.map (fun (location_trace, rotated_pattern) ->
      Exp.case
        rotated_pattern
        (instrumentation_for_location_trace points location_trace [%expr ()]))
    |> fun nested_match_cases ->
      nested_match_cases @ [Exp.case [%pat? _] [%expr ()]]
    |> Exp.match_ ~loc ([%expr ___bisect_matched_value___])
    |> fun nested_match ->
      Exp.attr
        nested_match
        {
          attr_name = {txt = "ocaml.warning"; loc};
          attr_payload = PStr [[%stri "-4-8-9-11-26-27-28-33"]];
          attr_loc = loc
        }

  (* This function works recursively. It should be called with a pattern [p]
     (second argument) and its location (first argument).

     It evaluates to a list of patterns. Each of these resulting patterns
     contains no nested or-patterns. Joining the resulting patterns in a single
     or-pattern would create a pattern equivalent to [p].

     Each pattern in the list is paired with a list of locations. These are the
     locations of the original cases of or-patterns in [p] that were chosen for
     the corresponding result pattern. For example:

       C (A | B), D (E | F)

     becomes the list of pairs

       (C A, D E), [loc A, loc E]
       (C A, D F), [loc A, loc F]
       (C B, D E), [loc B, loc E]
       (C B, D F), [loc B, loc F]

     During recursion, the invariant on the location is that it is the location
     of the nearest enclosing or-pattern, or the entire pattern, if there is no
     enclosing or-pattern. *)
  let rotate_or_patterns_to_top loc p =
    let rec recur ~enclosing_loc p =
      let loc = Parsetree.(p.ppat_loc) in
      let attrs = Parsetree.(p.ppat_attributes) in

      match p.ppat_desc with

      (* If the pattern ends with something trivial, that is not an or-pattern,
         and has no nested patterns (so can't have a nested or-pattern), then
         that pattern is the only top-level case. The location trace is just the
         location of the overall pattern.

         Here are some examples of how this plays out. Let's say the entire
         pattern was "x". Then the case list will be just "x", with its own
         location for the trace.

         If the entire pattern was "x as y", this recursive call will return
         just "x" with the location of "x as y" for the trace. The wrapping
         recursive call will turn the "x" back into "x as y".

         If the entire pattern was "A x | B", this recursive call will return
         just "x" with the location of "A" (not the whole pattern!). The
         wrapping recursive call, for constructor "A", will turn the "x" into
         "A x". A yet-higher wrapping recursive call, for the actual or-pattern,
         will concatenate this with a second top-level case, corresponding to
         "B". *)
      | Ppat_any | Ppat_var _ | Ppat_constant _ | Ppat_interval _
      | Ppat_construct (_, None) | Ppat_variant (_, None) | Ppat_type _
      | Ppat_unpack _ | Ppat_extension _ ->
        [([enclosing_loc], p)]

      (* Recursively rotate or-patterns in [p'] to the top. Then, for each one,
         re-wrap it in an alias pattern. The location traces are not
         affected. *)
      | Ppat_alias (p', x) ->
        recur ~enclosing_loc p'
        |> List.map (fun (location_trace, p'') ->
          (location_trace, Pat.alias ~loc ~attrs p'' x))

      | Ppat_construct (c, Some p') ->
        recur ~enclosing_loc p'
        |> List.map (fun (location_trace, p'') ->
          (location_trace, Pat.construct ~loc ~attrs c (Some p'')))

      | Ppat_variant (c, Some p') ->
        recur ~enclosing_loc p'
        |> List.map (fun (location_trace, p'') ->
          (location_trace, Pat.variant ~loc ~attrs c (Some p'')))

      | Ppat_constraint (p', t) ->
        recur ~enclosing_loc p'
        |> List.map (fun (location_trace, p'') ->
          (location_trace, Pat.constraint_ ~loc ~attrs p'' t))

      | Ppat_lazy p' ->
        recur ~enclosing_loc p'
        |> List.map (fun (location_trace, p'') ->
          (location_trace, Pat.lazy_ ~loc ~attrs p''))

      | Ppat_open (c, p') ->
        recur ~enclosing_loc p'
        |> List.map (fun (location_trace, p'') ->
          (location_trace, Pat.open_ ~loc ~attrs c p''))

      | Ppat_exception p' ->
        recur ~enclosing_loc p'
        |> List.map (fun (location_trace, p'') ->
          (location_trace, Pat.exception_ ~loc ~attrs p''))

      (* Recursively rotate or-patterns in each pattern in [ps] to the top.
         Then, take a Cartesian product of the cases, and re-wrap each row in a
         replacement tuple pattern.

         For example, suppose we have the pair pattern

           (A | B, C | D)

         The recursive calls will produce lists of rotated cases for each
         component pattern:

           A | B   =>   [A, loc A]; [B, loc B]
           C | D   =>   [C, loc C]; [D, loc D]

         We now need every possible combination of one case from the first
         component, one case from the second, and so on, and to concatenate all
         the location traces accordingly:

           [A; C, loc A; loc C]
           [A; D, loc A; loc D]
           [B; C, loc B; loc C]
           [B; D, loc B; loc D]

         This is performed by [all_combinations].

         Finally, we need to take each one of these rows, and re-wrap the
         pattern lists (on the left side) into tuples.

         This is typical of "and-patterns", i.e. those that match various
         product types (those that carry multiple pieces of data
         simultaneously). *)
      | Ppat_tuple ps ->
        ps
        |> List.map (recur ~enclosing_loc)
        |> all_combinations
        |> List.map (fun (location_trace, ps') ->
          (location_trace, Pat.tuple ~loc ~attrs ps'))

      | Ppat_record (entries, closed) ->
        let labels, ps = List.split entries in
        ps
        |> List.map (recur ~enclosing_loc)
        |> all_combinations
        |> List.map (fun (location_trace, ps') ->
          (location_trace,
            Pat.record ~loc ~attrs (List.combine labels ps') closed))

      | Ppat_array ps ->
        ps
        |> List.map (recur ~enclosing_loc)
        |> all_combinations
        |> List.map (fun (location_trace, ps') ->
          location_trace, Pat.array ~loc ~attrs ps')

      (* For or-patterns, recur into each branch. Then, concatenate the
          resulting case lists. Don't reassemble an or-pattern. *)
      | Ppat_or (p_1, p_2) ->
        let ps_1 = recur ~enclosing_loc:p_1.ppat_loc p_1 in
        let ps_2 = recur ~enclosing_loc:p_2.ppat_loc p_2 in
        ps_1 @ ps_2

    (* Performs the Cartesian product operation described at [Ppat_tuple] above,
       concatenating location traces along the way.

       The argument is rows of top-level case lists (so a list of lists), each
       case list resulting from rotating some nested pattern. Since tuples,
       arrays, etc., have lists of nested patterns, we have a list of case
       lists. *)
    and all_combinations = function
      | [] -> []
      | cases::more ->
        let multiply product cases =
          product |> List.map (fun (location_trace_1, ps) ->
            cases |> List.map (fun (location_trace_2, p) ->
              location_trace_1 @ location_trace_2, ps @ [p]))
          |> List.flatten
        in

        let initial =
          cases
          |> List.map (fun (location_trace, p) -> location_trace, [p])
        in

        List.fold_left multiply initial more
    in

    recur ~enclosing_loc:loc p

  let rec partition_exceptions (p : Parsetree.pattern) =
    match p.ppat_desc with
    | Ppat_any | Ppat_var _ | Ppat_alias _ | Ppat_constant _ | Ppat_interval _
    | Ppat_tuple _ | Ppat_construct _ | Ppat_variant _ | Ppat_record _
    | Ppat_array _ | Ppat_type _ | Ppat_lazy _ | Ppat_unpack _
    | Ppat_extension _ ->
      Some p, None

    | Ppat_exception _ ->
      None, Some p

    | Ppat_constraint (p', t) ->
      let reassemble p' = {p with ppat_desc = Ppat_constraint (p', t)} in
      let p_value, p_exception = partition_exceptions p' in
      Option.map reassemble p_value, Option.map reassemble p_exception

    | Ppat_open (m, p') ->
      let reassemble p' = {p with ppat_desc = Ppat_open (m, p')} in
      let p_value, p_exception = partition_exceptions p' in
      Option.map reassemble p_value, Option.map reassemble p_exception

    | Ppat_or (p1, p2) ->
      let reassemble p1' p2' =
        match p1', p2' with
        | None, None -> None
        | (Some _ as p1'), None -> p1'
        | None, (Some _ as p2') -> p2'
        | Some p1', Some p2' -> Some {p with ppat_desc = Ppat_or (p1', p2')}
      in
      let p1_value, p1_exception = partition_exceptions p1 in
      let p2_value, p2_exception = partition_exceptions p2 in
      reassemble p1_value p2_value, reassemble p1_exception p2_exception

  let rec alias_exceptions loc p =
    match Parsetree.(p.ppat_desc) with
    | Ppat_any | Ppat_var _ | Ppat_alias _ | Ppat_constant _ | Ppat_interval _
    | Ppat_tuple _ | Ppat_construct _ | Ppat_variant _ | Ppat_record _
    | Ppat_array _ | Ppat_type _ | Ppat_lazy _ | Ppat_unpack _
    | Ppat_extension _ ->
      p

    | Ppat_or (p_1, p_2) ->
      {p with ppat_desc =
        Ppat_or (alias_exceptions loc p_1, alias_exceptions loc p_2)}

    | Ppat_constraint (p', t) ->
      {p with ppat_desc =
        Ppat_constraint (alias_exceptions loc p', t)}

    | Ppat_exception p' ->
      {p with ppat_desc =
        Ppat_exception (add_bisect_matched_value_alias loc p')}

    | Ppat_open (m, p') ->
      {p with ppat_desc =
        Ppat_open (m, alias_exceptions loc p')}

  let rec drop_exception_patterns p =
    match Parsetree.(p.ppat_desc) with
    | Ppat_any | Ppat_var _ | Ppat_alias _ | Ppat_constant _ | Ppat_interval _
    | Ppat_tuple _ | Ppat_construct _ | Ppat_variant _ | Ppat_record _
    | Ppat_array _ | Ppat_type _ | Ppat_lazy _ | Ppat_unpack _
    | Ppat_extension _ ->
      p (* Should be unreachable. *)

    | Ppat_or _ ->
      p (* Should be unreachable. *)

    (* Dropping exception patterns will change the meaning of type constraints
       on them, so drop the type constraints along the way. *)
    | Ppat_constraint (p', _) ->
      drop_exception_patterns p'

    | Ppat_exception p' ->
      p'

    | Ppat_open (m, p') ->
      {p with ppat_desc =
        Ppat_open (m, drop_exception_patterns p')}

  let rec bound_variables p =
    match Parsetree.(p.ppat_desc) with
    | Ppat_any | Ppat_constant _ | Ppat_interval _ | Ppat_construct (_, None)
    | Ppat_variant (_, None) | Ppat_type _ | Ppat_unpack _ | Ppat_extension _ ->
      []

    | Ppat_var x ->
      [x]

    | Ppat_alias (p', x) ->
      x::(bound_variables p')

    | Ppat_tuple ps | Ppat_array ps ->
      List.map bound_variables ps
      |> List.flatten

    | Ppat_record (fields, _) ->
      List.map (fun (_, p') -> bound_variables p') fields
      |> List.flatten

    | Ppat_construct (_, Some p') | Ppat_variant (_, Some p')
    | Ppat_constraint (p', _) | Ppat_lazy p' | Ppat_exception p'
    | Ppat_open (_, p') ->
      bound_variables p'

    | Ppat_or (p_1, _) ->
      bound_variables p_1 (* Should be unreachable. *)

  let rec has_polymorphic_variant p =
    match Parsetree.(p.ppat_desc) with
    | Ppat_any | Ppat_constant _ | Ppat_interval _ | Ppat_construct (_, None)
    | Ppat_unpack _ | Ppat_extension _ | Ppat_var _ ->
      false

    | Ppat_type _ | Ppat_variant _ ->
      true

    | Ppat_alias (p', _) | Ppat_construct (_, Some p')
    | Ppat_constraint (p', _) | Ppat_lazy p' | Ppat_exception p'
    | Ppat_open (_, p') ->
      has_polymorphic_variant p'

    | Ppat_tuple ps | Ppat_array ps ->
      List.exists has_polymorphic_variant ps

    | Ppat_record (fields, _) ->
      List.exists (fun (_, p') -> has_polymorphic_variant p') fields

    | Ppat_or (p1, p2) ->
      has_polymorphic_variant p1 || has_polymorphic_variant p2

  let rec make_function loc body = function
    | [] ->
      Exp.fun_ ~loc Ppxlib.Nolabel None [%pat? ()] body
    | x::rest ->
      Exp.fun_ ~loc Ppxlib.Nolabel None (Pat.var ~loc x) (make_function loc body rest)

  let instrument_cases
      points ?(use_aliases = false) (cases : Parsetree.case list) =
    let cases =
      List.map (fun case ->
        case, partition_exceptions case.Parsetree.pc_lhs) cases
    in
    let use_aliases =
      use_aliases || (cases |> List.exists (function
        | (_, (Some p, _)) when has_polymorphic_variant p -> true
        | _ -> false))
    in
    cases
    |> List.fold_left begin fun
        (value_cases, exception_cases, functions, need_binding, index)
        ((case : Parsetree.case), (value_pattern, exception_pattern)) ->
      let loc = case.pc_lhs.ppat_loc in

      let case, functions =
        match value_pattern, exception_pattern with
        | Some p, Some _ ->
          let variables = bound_variables p in
          let apply loc name =
            Exp.apply ~loc
              (Exp.ident ~loc {txt = Longident.parse name; loc})
              (List.map (fun {Location.loc; txt} ->
                Ppxlib.Nolabel,
                Exp.ident ~loc {txt = Longident.parse txt; loc})
                variables
              @ [Ppxlib.Nolabel, [%expr ()]])
          in

          let case, functions =
            match case.pc_guard with
            | None ->
              case, functions
            | Some guard ->
              let guard_name = Printf.sprintf "___bisect_guard_%i___" index in
              let guard_function =
                Ppxlib.Ast_helper.Vb.mk ~loc
                  (Pat.var ~loc {Location.loc; txt = guard_name})
                  (make_function loc guard variables)
              in
              {case with pc_guard = Some (apply guard.pexp_loc guard_name)},
              guard_function::functions
          in

          let case_name = Printf.sprintf "___bisect_case_%i___" index in
          let case_function =
            Ppxlib.Ast_helper.Vb.mk ~loc
              (Pat.var ~loc {Location.loc; txt = case_name})
              (make_function loc case.pc_rhs variables)
          in
          {case with pc_rhs = apply case.pc_rhs.pexp_loc case_name},
          case_function::functions
        | _ ->
          case, functions
      in

      let value_cases, need_binding =
        match value_pattern with
        | None -> value_cases, need_binding
        | Some p ->
          let loc = p.ppat_loc in
          let case = {case with pc_lhs = p} in
          if is_assert_false_or_refutation case then
            case::value_cases, need_binding
          else
            let case, need_binding =
              match rotate_or_patterns_to_top loc p with
              | [] ->
                insert_instrumentation points
                  case
                  (fun e -> instrument_expr points e),
                need_binding
              | [(location_trace, _)] ->
                insert_instrumentation points
                  case
                  (instrumentation_for_location_trace points location_trace),
                need_binding
              | rotated_cases ->
                let case =
                  if use_aliases then
                    {case with pc_lhs =
                      add_bisect_matched_value_alias loc case.pc_lhs}
                  else
                    case
                in
                let nested_match =
                  generate_nested_match points loc rotated_cases in
                insert_instrumentation points
                  case
                  (fun e -> [%expr [%e nested_match]; [%e e]]),
                true
            in
            case::value_cases, need_binding
      in

      let exception_cases =
        match exception_pattern with
        | None -> exception_cases
        | Some p ->
          let loc = p.Parsetree.ppat_loc in
          let case = {case with pc_lhs = p} in
          let case =
            match rotate_or_patterns_to_top loc p with
            | [] ->
              insert_instrumentation points
                case
                (fun e -> instrument_expr points e)
            | [(location_trace, _)] ->
              insert_instrumentation points
                case
                (instrumentation_for_location_trace points location_trace)
            | rotated_cases ->
              let nested_match =
                rotated_cases
                |> List.map (fun (trace, p) -> trace, drop_exception_patterns p)
                |> generate_nested_match points loc
              in
              insert_instrumentation points
                {case with pc_lhs = alias_exceptions loc p}
                (fun e -> [%expr [%e nested_match]; [%e e]])
          in
          case::exception_cases
      in

      value_cases, exception_cases, functions, need_binding, index + 1
    end ([], [], [], false, 0)
    |> fun (v, e, f, n, _) ->
      List.rev v, List.rev e, List.rev f, n && not use_aliases

  let runtime_initialization points file =
    let loc = Location.in_file file in

    let mangled_module_name =
      let buffer = Buffer.create ((String.length file) * 2) in
      file |> String.iter (function
        | 'A'..'Z' | 'a'..'z' | '0'..'9' | '_' as c ->
          Buffer.add_char buffer c
        | _ ->
          Buffer.add_string buffer "___");
      "Bisect_visit___" ^ (Buffer.contents buffer)
    in

    let points_data =
      Ast_builder.Default.pexp_array ~loc
        (List.map
          (fun offset -> Ast_builder.Default.eint ~loc offset)
          (List.rev points.offsets))
    in
    let filename = Ast_builder.Default.estring ~loc file in

    let ast_convenience_str_opt = function
      | None ->
        Exp.construct ~loc {txt = Longident.parse "None"; loc} None
      | Some v ->
        Some (Ast_builder.Default.estring ~loc v)
        |> Exp.construct ~loc {txt = Longident.parse "Some"; loc}
    in
    let bisect_file = ast_convenience_str_opt !bisect_file in
    let bisect_silent = ast_convenience_str_opt !bisect_silent in
    let bisect_sigterm =
      let open Parsetree in
      if !bisect_sigterm then [%expr true] else [%expr false]
    in

    (* ___bisect_visit___ is a function with a reference to a point count array.
       It is called every time a point is visited.

       It is scoped in a local module, to ensure that each compilation unit
       calls its own ___bisect_visit___ function. In particular, if
       ___bisect_visit___ is unscoped, the following interaction is possible
       between a.ml and b.ml:


       a.ml:

       let ___bisect_visit___ = (* ... *)

       b.ml:

       let ___bisect_visit___ = (* ... *)

       open A
       (* Further calls to ___bisect_visit___ are to A's instance of it! *)


       To prevent this, Bisect_ppx generates:


       a.ml:

       module Bisect_visit___ =
       struct
         let ___bisect_visit___ = (* ... *)
       end
       open Bisect_visit___ (* Scope of open is only a.ml. *)

       b.ml:

       module Bisect_visit___ =
       struct
         let ___bisect_visit___ = (* ... *)
       end
       open Bisect_visit___
       (* Since this open is prepended to b.ml, it is guaranteed to precede any
          open A. At the same time, open A introduces Bisect_visit___ into
          scope, not ___bisect_visit___. So, after this point, any unqualified
          reference to ___bisect_visit___ is to b.ml's instance. *)

       open A


       Bisect_ppx needs to mangle the generated module names, to make them
       unique. Otherwise, including A in B triggers a duplicate module
       Bisect_visit___ error. This is better than mangling ___bisect_visit___
       itself for two reasons:

       1. A collision of mangled module names (due to include) is a compile-time
          error. By comparison, a collusion of mangled function names will
          result in one silently shadowing the other, which *may* produce a
          runtime error if (1) the shadowing function has a smaller points array
          than the shadowed function and (2) the shadowing function is actually
          called with a large enough point index during testing. If shadowing
          does not produce a runtime error, it can result in inaccurate coverage
          statistics being silently accumulated.
       2. ___bisect_visit___, sprinked throughout the code, can be kept
          unmangled. This keeps the mangling generation code local to this
          instrumentation function, which generates only the top of each
          instrumented module. That keeps the instrumenter relatively simple.


       For discussion, see

         https://github.com/aantron/bisect_ppx/issues/160 *)
    let generated_module =
      let bisect_visit_function =
        let open Parsetree in
        [%stri
          let ___bisect_visit___ =
            let points = [%e points_data] in
            let `Visit visit =
              Bisect.Runtime.register_file
                ~bisect_file:[%e bisect_file] ~bisect_silent:[%e bisect_silent]
                ~filename:[%e filename] ~points ~bisect_sigterm:[%e bisect_sigterm]
            in
            visit
        ]
      in

      let bisect_post_visit =
        let open Parsetree in
        [%stri
          let ___bisect_post_visit___ point_index result =
            ___bisect_visit___ point_index;
            result
        ]
      in

      let open Ppxlib.Ast_helper in
      Str.module_ ~loc @@
        Mb.mk ~loc
          {txt = Some mangled_module_name; loc}
          (Mod.structure ~loc [
            bisect_visit_function;
            bisect_post_visit;
          ])
    in

    let module_open =
      let open Ppxlib.Ast_helper in

      (* This requires the assumption that the mangled module name doesn't have
         any periods. *)
      Str.open_ ~loc @@
        Opn.mk ~loc @@
          Mod.ident ~loc {txt = Longident.parse mangled_module_name; loc}
    in

    let open Parsetree in
    let stop_comment = [%stri [@@@ocaml.text "/*"]] in

    [stop_comment; generated_module; module_open; stop_comment]
end



(* The actual "instrumenter" object, instrumenting expressions. *)
class instrumenter =
  let points = Generated_code.init () in
  let instrument_expr = Generated_code.instrument_expr points in
  let instrument_cases = Generated_code.instrument_cases points in

  object (self)
    inherit Ppxlib.Ast_traverse.map_with_expansion_context as super

    method! class_expr ctxt ce =
      let loc = ce.pcl_loc in
      let attrs = ce.pcl_attributes in
      let ce = super#class_expr ctxt ce in

      match ce.pcl_desc with
      | Pcl_fun (l, e, p, ce) ->
        Cl.fun_ ~loc ~attrs l (Option.map instrument_expr e) p ce

      | _ ->
        ce

    method! class_field ctxt cf =
      let loc = cf.pcf_loc in
      let attrs = cf.pcf_attributes in
      let cf = super#class_field ctxt cf in

      match cf.pcf_desc with
      | Pcf_method (name, private_, cf) ->
        Cf.method_ ~loc ~attrs
          name private_
          (match cf with
          | Cfk_virtual _ -> cf
          | Cfk_concrete (o, e) ->
            Cf.concrete o (instrument_expr e))

      | Pcf_initializer e ->
        Cf.initializer_ ~loc ~attrs (instrument_expr e)

      | _ ->
        cf

    method! expression ctxt e =
      let is_trivial_function = Parsetree.(function
        | [%expr (&&)]
        | [%expr (&)]
        | [%expr not]
        | [%expr (=)]
        | [%expr (<>)]
        | [%expr (<)]
        | [%expr (<=)]
        | [%expr (>)]
        | [%expr (>=)]
        | [%expr (==)]
        | [%expr (!=)]
        | [%expr ref]
        | [%expr (!)]
        | [%expr (:=)]
        | [%expr (@)]
        | [%expr (^)]
        | [%expr (+)]
        | [%expr (-)]
        | [%expr ( * )]
        | [%expr (/)]
        | [%expr (+.)]
        | [%expr (-.)]
        | [%expr ( *. )]
        | [%expr (/.)]
        | [%expr (mod)]
        | [%expr (land)]
        | [%expr (lor)]
        | [%expr (lxor)]
        | [%expr (lsl)]
        | [%expr (lsr)]
        | [%expr (asr)]
        | [%expr raise]
        | [%expr raise_notrace]
        | [%expr failwith]
        | [%expr ignore]
        | [%expr Sys.opaque_identity]
        | [%expr Obj.magic]
        | [%expr (##)]
        | [%expr React.forwardRef]
        | [%expr React.memo] -> true
        | _ -> false)
      in

      let rec traverse ?(successor = `None) ~is_in_tail_position e =
        let attrs = e.Parsetree.pexp_attributes in
        if Coverage_attributes.has_off_attribute attrs then
          e

        else begin
          let loc = e.pexp_loc in

          match e.pexp_desc with
          (* Expressions that invoke arbitrary code, and may not terminate. *)
          | Pexp_apply
              ([%expr (|>)] | [%expr (|.)] as operator, [(l, e); (l', e')]) ->
            let apply =
              Exp.apply ~loc ~attrs
                operator
                [(l,
                  traverse
                    ~successor:(`Expression e') ~is_in_tail_position:false e);
                 (l',
                  traverse ~successor:`Redundant ~is_in_tail_position:false e')]
            in
            if is_in_tail_position then
              apply
            else
              begin match successor with
              | `None ->
                let rec fn e' =
                  match e'.Parsetree.pexp_desc with
                  | Pexp_apply (e'', _) ->
                    let attributes = e'.pexp_attributes in
                    if Coverage_attributes.has_off_attribute attributes then
                      e'
                    else
                      fn e''
                  | _ -> e'
                in
                instrument_expr
                  ~use_loc_of:(fn e') ~at_end:true ~post:true apply
              | `Redundant ->
                apply
              | `Expression e ->
                instrument_expr ~use_loc_of:e ~post:true apply
              end

          | Pexp_apply (([%expr (||)] | [%expr (or)]), [(_l, e); (_l', e')]) ->
            let e_mark =
              instrument_expr ~use_loc_of:e ~at_end:true [%expr true] in
            let e'_new =
              match e'.pexp_desc with
              | Pexp_apply (([%expr (||)] | [%expr (or)]), _) ->
                traverse ~is_in_tail_position e'
              | Pexp_apply (e'', _)
                when is_in_tail_position && not (is_trivial_function e'') ->
                traverse ~is_in_tail_position:true e'
              | Pexp_send _ | Pexp_new _ when is_in_tail_position ->
                traverse ~is_in_tail_position:true e'
              | _ ->
                let open Parsetree in
                [%expr
                  if [%e traverse ~is_in_tail_position:false e'] then
                    [%e
                      instrument_expr ~use_loc_of:e' ~at_end:true [%expr true]]
                  else
                    false]
            in
            let open Parsetree in
            [%expr
              if [%e traverse ~is_in_tail_position:false e] then
                [%e e_mark]
              else
                [%e e'_new]]

          | Pexp_apply (e, arguments) ->
            let arguments =
              match e, arguments with
              | ([%expr (&&)] | [%expr (&)]),
                [(ll, el); (lr, er)] ->
                [(ll,
                  traverse ~is_in_tail_position:false el);
                 (lr,
                  instrument_expr (traverse ~is_in_tail_position er))]

              | [%expr (@@)],
                [(ll, ({pexp_desc = Pexp_apply _; _} as el)); (lr, er)] ->
                [(ll,
                  traverse
                    ~successor:`Redundant ~is_in_tail_position:false el);
                 (lr,
                  traverse ~is_in_tail_position:false er)]

              | _ ->
                List.map (fun (label, e) ->
                  (label, traverse ~is_in_tail_position:false e)) arguments
            in
            let e =
              match e.pexp_desc with
              | Pexp_new _ ->
                e
              | Pexp_send _ ->
                traverse ~successor:`Redundant ~is_in_tail_position:false e
              | _ ->
                traverse ~is_in_tail_position:false e
            in
            let apply = Exp.apply ~loc ~attrs e arguments in
            let all_arguments_labeled =
              arguments
              |> List.for_all (fun (label, _) -> label <> Ppxlib.Nolabel)
            in
            if is_in_tail_position || all_arguments_labeled then
              apply
            else
              if is_trivial_function e then
                apply
              else
                begin match successor with
                | `None ->
                  let use_loc_of =
                    match e, arguments with
                    | [%expr (@@)], [(_, e'); _] ->
                      e'
                    | _ ->
                      e
                  in
                  instrument_expr ~use_loc_of ~at_end:true ~post:true apply
                | `Redundant ->
                  apply
                | `Expression e' ->
                  instrument_expr ~use_loc_of:e' ~at_end:false ~post:true apply
                end

          | Pexp_send (e, m) ->
            let apply =
              Exp.send ~loc ~attrs (traverse ~is_in_tail_position:false e) m in
            if is_in_tail_position then
              apply
            else
              begin match successor with
              | `None ->
                instrument_expr ~at_end:true ~post:true apply
              | `Redundant ->
                apply
              | `Expression e' ->
                instrument_expr ~use_loc_of:e' ~post:true apply
              end

          | Pexp_new _ ->
            if is_in_tail_position then
              e
            else
              begin match successor with
              | `None ->
                instrument_expr ~at_end:true ~post:true e
              | `Redundant ->
                e
              | `Expression e' ->
                instrument_expr ~use_loc_of:e' ~post:true e
              end

          | Pexp_assert [%expr false] ->
            e

          | Pexp_assert e ->
            Exp.assert_ (traverse ~is_in_tail_position:false e)
            |> instrument_expr ~use_loc_of:e ~post:true

          (* Expressions that have subexpressions that might not get visited. *)
          | Pexp_function cases ->
            let cases, _, _, need_binding =
              instrument_cases
                (traverse_cases ~is_in_tail_position:true cases)
            in
            if need_binding then
              Exp.fun_ ~loc ~attrs
                Ppxlib.Nolabel None ([%pat? ___bisect_matched_value___])
                (Exp.match_ ~loc
                  ([%expr ___bisect_matched_value___]) cases)
            else
              Exp.function_ ~loc ~attrs cases

          | Pexp_fun (label, default_value, p, e) ->
            let default_value =
              Option.map (fun e ->
                instrument_expr
                  (traverse ~is_in_tail_position:false e)) default_value
            in
            let e = traverse ~is_in_tail_position:true e in
            let e =
              match e.pexp_desc with
              | Pexp_function _ | Pexp_fun _ -> e
              | Pexp_constraint (e', t) ->
                {e with pexp_desc = Pexp_constraint (instrument_expr e', t)}
              | _ -> instrument_expr e
            in
            Exp.fun_ ~loc ~attrs label default_value p e

          | Pexp_match (e, cases) ->
            let value_cases, exception_cases, functions, need_binding =
              instrument_cases (traverse_cases ~is_in_tail_position cases) in
            let top_level_cases =
              if need_binding then
                let value_case = Parsetree.{
                  pc_lhs = [%pat? ___bisect_matched_value___];
                  pc_guard = None;
                  pc_rhs =
                    Exp.match_ ~loc ~attrs
                      ([%expr ___bisect_matched_value___])
                      value_cases;
                }
                in
                exception_cases @ [value_case]
              else
                exception_cases @ value_cases
            in
            let match_ =
              Exp.match_ ~loc ~attrs
                (traverse ~successor:`Redundant ~is_in_tail_position:false e)
                top_level_cases
            in
            begin match functions with
            | [] -> match_
            | _ -> Exp.let_ ~loc Nonrecursive functions match_
            end

          | Pexp_try (e, cases) ->
            let cases, _, _, _ =
              instrument_cases ~use_aliases:true
                (traverse_cases ~is_in_tail_position cases)
            in
            Exp.try_ ~loc ~attrs (traverse ~is_in_tail_position:false e) cases

          | Pexp_ifthenelse (if_, then_, else_) ->
            Exp.ifthenelse ~loc ~attrs
              (traverse ~successor:`Redundant ~is_in_tail_position:false if_)
              (instrument_expr (traverse ~is_in_tail_position then_))
              (Option.map (fun e ->
                instrument_expr (traverse ~is_in_tail_position e)) else_)

          | Pexp_while (while_, do_) ->
            Exp.while_ ~loc ~attrs
              (traverse ~is_in_tail_position:false while_)
              (instrument_expr (traverse ~is_in_tail_position:false do_))

          | Pexp_for (v, initial, to_, direction, do_) ->
            Exp.for_ ~loc ~attrs
              v
              (traverse ~is_in_tail_position:false initial)
              (traverse ~is_in_tail_position:false to_)
              direction
              (instrument_expr (traverse ~is_in_tail_position:false do_))

          | Pexp_lazy e ->
            let rec is_trivial_syntactic_value e =
              match e.Parsetree.pexp_desc with
              | Pexp_function _ | Pexp_fun _ | Pexp_poly _ | Pexp_ident _
              | Pexp_constant _ | Pexp_construct (_, None) ->
                true
              | Pexp_constraint (e, _) | Pexp_coerce (e, _, _) ->
                is_trivial_syntactic_value e
              | _ ->
                false
            in
            let e = traverse ~is_in_tail_position:true e in
            let e =
              (* lazy applied to certain syntactic values is compiled as already
                 forced. Since inserting instrumentation under such a lazy would
                 make the nested expression not a syntactic value, it would
                 change the compilation of the lazy. See
                 https://github.com/aantron/bisect_ppx/issues/398. *)
              if is_trivial_syntactic_value e then
                e
              else
                instrument_expr e
            in
            Exp.lazy_ ~loc ~attrs e

          | Pexp_poly (e, t) ->
            let e = traverse ~is_in_tail_position:true e in
            let e =
              match e.pexp_desc with
              | Pexp_function _ | Pexp_fun _ -> e
              | _ -> instrument_expr e
            in
            Exp.poly ~loc ~attrs e t

          | Pexp_letop {let_; ands; body} ->
            let traverse_binding_op binding_op =
              {binding_op with
                Parsetree.pbop_exp =
                  traverse
                    ~is_in_tail_position:false binding_op.Parsetree.pbop_exp}
            in
            Exp.letop ~loc ~attrs
              (traverse_binding_op let_)
              (List.map traverse_binding_op ands)
              (instrument_expr (traverse ~is_in_tail_position:true body))

          (* Expressions that don't fit either of the above categories. These
             don't need to be instrumented. *)
          | Pexp_ident _ | Pexp_constant _ ->
            e

          | Pexp_let (rec_flag, bindings, e) ->
            let successor =
              match bindings with
              | [_one] -> `Expression e
              | _ -> `None
            in
            Exp.let_ ~loc ~attrs
              rec_flag
              (bindings
              |> List.map (fun binding ->
                Parsetree.{binding with pvb_expr =
                  traverse
                    ~successor ~is_in_tail_position:false binding.pvb_expr}))
              (traverse ~is_in_tail_position e)

          | Pexp_tuple es ->
            Exp.tuple ~loc ~attrs
              (List.map (traverse ~is_in_tail_position:false) es)

          | Pexp_construct (c, e) ->
            Exp.construct ~loc ~attrs
              c (Option.map (traverse ~is_in_tail_position:false) e)

          | Pexp_variant (c, e) ->
            Exp.variant ~loc ~attrs
              c (Option.map (traverse ~is_in_tail_position:false) e)

          | Pexp_record (fields, e) ->
            Exp.record ~loc ~attrs
              (fields
              |> List.map (fun (f, e) ->
                (f, traverse ~is_in_tail_position:false e)))
              (Option.map (traverse ~is_in_tail_position:false) e)

          | Pexp_field (e, f) ->
            Exp.field ~loc ~attrs (traverse ~is_in_tail_position:false e) f

          | Pexp_setfield (e, f, e') ->
            Exp.setfield ~loc ~attrs
              (traverse ~is_in_tail_position:false e)
              f
              (traverse ~is_in_tail_position:false e')

          | Pexp_array es ->
            Exp.array ~loc ~attrs
              (List.map (traverse ~is_in_tail_position:false) es)

          | Pexp_sequence (e, e') ->
            let e' = traverse ~is_in_tail_position e' in
            let e' =
              match e.pexp_desc with
              | Pexp_ifthenelse (_, _, None) -> instrument_expr e'
              | _ -> e'
            in
            Exp.sequence ~loc ~attrs
              (traverse
                ~successor:(`Expression e') ~is_in_tail_position:false e)
              e'

          | Pexp_constraint (e, t) ->
            Exp.constraint_ ~loc ~attrs (traverse ~is_in_tail_position e) t

          | Pexp_coerce (e, t, t') ->
            Exp.coerce ~loc ~attrs (traverse ~is_in_tail_position e) t t'

          | Pexp_setinstvar (f, e) ->
            Exp.setinstvar ~loc ~attrs f (traverse ~is_in_tail_position:false e)

          | Pexp_override fs ->
            Exp.override ~loc ~attrs
              (fs
              |> List.map (fun (f, e) ->
                (f, traverse ~is_in_tail_position:false e)))

          | Pexp_letmodule (m, e, e') ->
            Exp.letmodule ~loc ~attrs
              m
              (self#module_expr ctxt e)
              (traverse ~is_in_tail_position e')

          | Pexp_letexception (c, e) ->
            Exp.letexception ~loc ~attrs c (traverse ~is_in_tail_position e)

          | Pexp_open (m, e) ->
            Exp.open_ ~loc ~attrs
              (self#open_declaration ctxt m)
              (traverse ~is_in_tail_position e)

          | Pexp_newtype (t, e) ->
            Exp.newtype ~loc ~attrs t (traverse ~is_in_tail_position e)

          (* Expressions that don't need instrumentation, and where AST
             traversal leaves the expression language. *)
          | Pexp_object c ->
            Exp.object_ ~loc ~attrs (self#class_structure ctxt c)

          | Pexp_pack m ->
            Exp.pack ~loc ~attrs (self#module_expr ctxt m)

          (* Expressions that are not recursively traversed at all. *)
          | Pexp_extension _ | Pexp_unreachable ->
            e
        end

      and traverse_cases ~is_in_tail_position cases =
        cases
        |> List.map begin fun case ->
          {case with
            Parsetree.pc_guard =
              Option.map
                (traverse ~is_in_tail_position:false) case.Parsetree.pc_guard;
            pc_rhs = traverse ~is_in_tail_position case.pc_rhs;
          }
          end

      in

      traverse ~is_in_tail_position:false e

    (* Set to [true] upon encountering [[@@@coverage.off]], and back to
       [false] again upon encountering [[@@@coverage.on]]. *)
    val mutable structure_instrumentation_suppressed = false

    method! structure_item ctxt si =
      let loc = si.pstr_loc in

      match si.pstr_desc with
      | Pstr_value (rec_flag, bindings) ->
        if structure_instrumentation_suppressed then
          si

        else
          let bindings =
            bindings
            |> List.map begin fun binding ->
              (* Only instrument things not excluded. *)
              let maybe_name =
                let open Parsetree in
                match binding.pvb_pat.ppat_desc with
                | Ppat_var ident
                | Ppat_constraint ({ppat_desc = Ppat_var ident; _}, _) ->
                  Some ident
                | _ ->
                  None
              in
              let do_not_instrument =
                match maybe_name with
                | Some name ->
                  Exclusions.contains_value
                    Location.(Lexing.(name.loc.loc_start.pos_fname))
                    name.txt
                | None ->
                  false
              in
              let do_not_instrument =
                do_not_instrument ||
                  Coverage_attributes.has_off_attribute binding.pvb_attributes
              in
              if do_not_instrument then
                binding
              else
                {binding with pvb_expr = self#expression ctxt binding.pvb_expr}
            end
          in
          Str.value ~loc rec_flag bindings

      | Pstr_eval (e, a) ->
        if structure_instrumentation_suppressed then
          si
        else
          Str.eval ~loc ~attrs:a (self#expression ctxt e)

      | Pstr_attribute attribute ->
        let kind = Coverage_attributes.recognize attribute in
        begin match kind with
        | `None ->
          ()
        | `Off ->
          if structure_instrumentation_suppressed then
            Location.raise_errorf
              ~loc:attribute.attr_loc "Coverage is already off.";
          structure_instrumentation_suppressed <- true
        | `On ->
          if not structure_instrumentation_suppressed then
            Location.raise_errorf
              ~loc:attribute.attr_loc "Coverage is already on.";
          structure_instrumentation_suppressed <- false
        | `Exclude_file ->
          (* See comment in [Coverage_attributes.has_off_attribute] for
             reasoning. *)
          Location.raise_errorf
            ~loc:attribute.attr_loc "coverage exclude_file is not allowed here."
        end;
        si

      | _ ->
        super#structure_item ctxt si

    (* Don't instrument payloads of extensions and attributes. *)
    method! extension _ e =
      e

    method! attribute _ a =
      a

    method! structure ctxt ast =
      let saved_structure_instrumentation_suppressed =
        structure_instrumentation_suppressed in
      let result = super#structure ctxt ast in
      structure_instrumentation_suppressed <-
        saved_structure_instrumentation_suppressed;
      result

    method transform_impl_file ctxt ast =
      let saved_structure_instrumentation_suppressed =
        structure_instrumentation_suppressed in

      let result =
        let path = Ppxlib.Expansion_context.Base.input_name ctxt in
        let file_should_not_be_instrumented =
          (* Bisect_ppx is hardcoded to ignore files with certain names. If we
             have one of these, return the AST uninstrumented. In particular,
             do not recurse into it. *)
          let always_ignore_paths = ["//toplevel//"; "(stdin)"] in
          let always_ignore_basenames = [".ocamlinit"; "topfind"] in

          List.mem path always_ignore_paths ||
          List.mem (Filename.basename path) always_ignore_basenames ||
          Exclusions.contains_file path ||
          Coverage_attributes.has_exclude_file_attribute ast
        in

        if file_should_not_be_instrumented then
          ast

        else begin
          let instrumented_ast = super#structure ctxt ast in
          let runtime_initialization =
            Generated_code.runtime_initialization points path in
          runtime_initialization @ instrumented_ast
        end
      in

      structure_instrumentation_suppressed <-
        saved_structure_instrumentation_suppressed;

      result
end