Legend:
Library
Module
Module type
Parameter
Class
Class type
`type 'a t = 'a future`
`include Monads.Std.Monad.S with type 'a t := 'a t`
`val void : 'a t -> unit t`

`void m` computes `m` and discrards the result.

`val sequence : unit t list -> unit t`

`sequence xs` computes a sequence of computations `xs` in the left to right order.

`val forever : 'a t -> 'b t`

`forever xs` creates a computationt that never returns.

`module Fn : sig ... end`

Various function combinators lifted into the Kleisli category.

`module Pair : sig ... end`

The pair interface lifted into the monad.

`module Triple : sig ... end`

The triple interface lifted into a monad.

`module Lift : sig ... end`

`module Exn : sig ... end`

Interacting between monads and language exceptions

`module Collection : sig ... end`

Lifts collection interface into the monad.

`module List : Collection.S with type 'a t := 'a list`

`module Seq : Collection.S with type 'a t := 'a Core_kernel.Sequence.t`

`include Monads.Std.Monad.Syntax.S with type 'a t := 'a t`
`val (>>=) : 'a t -> ( 'a -> 'b t ) -> 'b t`

`m >>= f` is `bind m f`

`val (>>|) : 'a t -> ( 'a -> 'b ) -> 'b t`

`m >>= f` is `map m ~f`

`val (>=>) : ( 'a -> 'b t ) -> ( 'b -> 'c t ) -> 'a -> 'c t`

`f >=> g` is `fun x -> f x >>= g`

`val (!!) : 'a -> 'a t`

`!!x` is `return x`

`val (!\$) : ( 'a -> 'b ) -> 'a t -> 'b t`

`!\$f` is `Lift.unary f`

`val (!\$\$) : ( 'a -> 'b -> 'c ) -> 'a t -> 'b t -> 'c t`

`!\$\$f` is `Lift.binary f`

`val (!\$\$\$) : ( 'a -> 'b -> 'c -> 'd ) -> 'a t -> 'b t -> 'c t -> 'd t`

`!\$\$\$f` is `Lift.ternary f`

```val (!\$\$\$\$) : ( 'a -> 'b -> 'c -> 'd -> 'e ) -> 'a t -> 'b t -> 'c t -> 'd t -> 'e t```

`!\$\$\$\$f` is `Lift.quaternary f`

```val (!\$\$\$\$\$) : ( 'a -> 'b -> 'c -> 'd -> 'e -> 'f ) -> 'a t -> 'b t -> 'c t -> 'd t -> 'e t -> 'f t```

`!\$\$\$\$\$f` is `Lift.quinary f`

`include Monads.Std.Monad.Syntax.Let.S with type 'a t := 'a t`
`val let* : 'a t -> ( 'a -> 'b t ) -> 'b t`

`let* r = f x in b` is `f x >>= fun r -> b`

`val and* : 'a t -> 'b t -> ('a * 'b) t`

monoidal product

`val let+ : 'a t -> ( 'a -> 'b ) -> 'b t`

`let+ r = f x in b` is `f x >>| fun r -> b`

`val and+ : 'a t -> 'b t -> ('a * 'b) t`

monoidal product

`include Core_kernel.Monad.S with type 'a t := 'a t`
`val (>>=) : 'a t -> ( 'a -> 'b t ) -> 'b t`

`t >>= f` returns a computation that sequences the computations represented by two monad elements. The resulting computation first does `t` to yield a value `v`, and then runs the computation returned by `f v`.

`val (>>|) : 'a t -> ( 'a -> 'b ) -> 'b t`

`t >>| f` is `t >>= (fun a -> return (f a))`.

`module Monad_infix : sig ... end`
`val bind : 'a t -> f:( 'a -> 'b t ) -> 'b t`

`bind t ~f` = `t >>= f`

`val join : 'a t t -> 'a t`

`join t` is `t >>= (fun t' -> t')`.

`val ignore_m : 'a t -> unit t`

`ignore_m t` is `map t ~f:(fun _ -> ())`. `ignore_m` used to be called `ignore`, but we decided that was a bad name, because it shadowed the widely used `Caml.ignore`. Some monads still do `let ignore = ignore_m` for historical reasons.

`module Let_syntax : sig ... end`

These are convenient to have in scope when programming with a monad:

`module Let : Monads.Std.Monad.Syntax.Let.S with type 'a t := 'a t`

`module Syntax : Monads.Std.Monad.Syntax.S with type 'a t := 'a t`

`include Core_kernel.Applicative.S with type 'a t := 'a t`
`val return : 'a -> 'a t`
`val map : 'a t -> f:( 'a -> 'b ) -> 'b t`
`val both : 'a t -> 'b t -> ('a * 'b) t`
`val (<*>) : ( 'a -> 'b ) t -> 'a t -> 'b t`

same as `apply`

`val (<*) : 'a t -> unit t -> 'a t`
`val (*>) : unit t -> 'a t -> 'a t`
`val (>>|) : 'a t -> ( 'a -> 'b ) -> 'b t`
`val apply : ( 'a -> 'b ) t -> 'a t -> 'b t`
`val map2 : 'a t -> 'b t -> f:( 'a -> 'b -> 'c ) -> 'c t`
`val map3 : 'a t -> 'b t -> 'c t -> f:( 'a -> 'b -> 'c -> 'd ) -> 'd t`
`val all : 'a t list -> 'a list t`
`val all_unit : unit t list -> unit t`
`module Applicative_infix : sig ... end`
`module Variadic : Variadic.S with type 'a arg = 'a t`
`module Args : sig ... end`
`val create : unit -> 'a t * 'a promise`

`create ()` creates a new future. The function returns a pair of the future itself and a promise that can be used to fulfill the future.

`val upon : 'a t -> ( 'a -> unit ) -> unit`

`upon f action` will call `action` as soon a future `f` occurs.

`val is_decided : 'a t -> bool`

`is_decided f` is true if a future `f` is already decided.

`val peek : 'a t -> 'a option`

`peek f` will return `Some value` if future `f` has already occurred with this `value`.

`val peek_exn : 'a t -> 'a`

`peek_exn f` will evaluate to `x` iff `is_decided f && peek f x = Some x`