
On variance, injectivity, and abstraction

Jacques Garrigue

1 Introduction

OCaml’s type system is rich. Its algebraic datatypes
support many features that are not included in most
other systems, such as variance (inferred or explicit),
constrained type parameters (useful for polymorphic
classes), and GADTs including existential type variables.

Taken together, this is already an interesting mix, but
combining them with the abstraction mechanism coming
from the module system creates even more interactions,
as known information about a type changes across ab-
straction barriers.

In april of this year, an unsoundness was discovered in
the type system when combining existential GADTs and
abstraction (cf. bug report by Jeremy Yallop at http:
//caml.inria.fr/mantis/view.php?id=5985.) This
problem was not unique to GADTs, and actually could
be reproduced with features present in OCaml since its
inception. We explain the problem, how it was solved
through a refinement of the variance information, how
this impacts programming, and how the language could
be extended for more flexibility.

2 Variance

Variance was introduced in OCaml in version 3.01. Be-
fore that, subtyping only applied to structural types.
With variance inference and variance annotations on ab-
stract types, it became possible to use subtyping on pa-
rameters of datatypes and abstract types. Later, with
the introduction of the value restriction, this variance
information was also used for improving polymorphism.

Superficially, inferring variance is a straightforward
task. One just visits type definitions, tracking occur-
rences of type variables in positive and negative posi-
tions. Positive and negative positions are switch when-
ever one goes through a contravariant type constructor,
such as the left hand-side of a functional arrow. If a
type parameter does not appear in a type it is irrele-
vant, and the type is bivariant (subtyping can be used
in both directions). If it only has positive occurrences
it is covariant (e.g. the parameter of list), only nega-
tive occurrences makes it contravariant (e.g. the domain
of a function type), both positive and negative makes it
invariant (e.g. arrays or reference cells).

You can already see here that all is not that simple:
when computing variance in a type definition, we also
use the variance computed for other type definitions. In

case of recursive type definitions, one needs to compute
a fixed point.

Abstraction introduces a first difficulty: the variance
of parameters in an abstract type is not necessarily the
same as their variance in its concrete definition:

module M : sig type ’a t type +’a u end =
struct
type ’a t = T of ’a
type ’a u = int

end

Here M.t is invariant, but its definition was covariant;
M.u is covariant, but ’a was bivariant in its definition.
However, intuitively it is fine do decrease variance, i.e.
go down in the following lattice:

bivariant

covariant contravariant

invariant

�
��	

@
@@R

@
@@R

�
��	

Things become a bit more complicated with con-
strained type parameters.

type +’r t = T of ’key * ’data list
constraint ’r = < key: ’key; data: ’data>

Here ’r does not appear in the type itself, but is used to
write the type parameters in a consolidated and infor-
mative way. Since ’r does not appear inside the type,
we cannot infer its variant, and it must be given explic-
itly (or be assumed invariant). How do we verify that
this variance is correct? The idea is to infer the variance
of type variables twice, the first time we compute their
occurrences in type parameters, and the second time in-
side the body of the definition. In the above example,
we start from ’r which is assumed covariant, and from
it we deduce that ’key and ’data are both covariant.
Then we look at the body of the definition and see that
both ’key and ’data have only positive occurrences, so
it is fine to see them as covariant.

While this definition is fine by itself, one can quickly
see that it is not compatible with the variance weakening
we defined for abstraction.

module F (X : sig type ’a r end) = struct
type +’a t = T of ’b
constraint ’a = ’b X.r

1



end
module M = F (struct type ’a r = ’a -> int end)

In the body of F, r is invariant, so even if we assume t
to be covariant in ’a, ’b is inferred invariant from pa-
rameters, which is sufficient since ’b has only positive
occurrences in the body of the definition. However, in
M, r becomes contravariant, so that one can actually use
contravariant subtyping on ’b, breaking our assumption
on constrained parameters. One can then define the fol-
lowing (invalid) function, where we call a non-existing
method.

let f (x : < >) =
let M.T y = (M.T x :> (<m : int> -> int) M.t)
in y#m

What went wrong here? Our assumption on con-
strained parameters did not take into account that
the variance information we have for constructors may
change through instantiation.

3 Injectivity

Actually, the same problem also occurs without using
subtyping.

module F (X : sig type ’a r end) = struct
type ’a t = T of ’b
constraint ’a = ’b X.r

end
module M = F (struct type ’a r = unit end)
let f x = let M.T y = M.T x in y
val f : ’a -> ’b

This is exactly the same cause: r is assumed to be invari-
ant, but it turns out to be bivariant. And since it is just
defined by an alias, it is not necessary to use subtyping
anymore.

In a type definition, we need all type variables that
occur in the body to satisfy injectivity: they should be
defined in a unique way from the type parameters.

While this is just special case of the variance problem
we described above (and was actually delegated to vari-
ance inference), this has a particular impact on GADTs.
Here is the GADT version of the above problem:

module F (X : sig type ’a r end) = struct
type _ t = T : ’a -> ’a X.r t

end
module R = struct type ’a r = unit end
module M = F (R)
let f x = let M.T y = M.T x in y
val f : ’a -> ’b

A simple solution to the above variant and injectiv-
ity problems is to assume that all abstract types, when
used in parameter constraints or GADT return types,
are potentially bivariant, and non injective. This basi-
cally means that, as long as we have no way to tell that

an abstract type is injective, we will not be able to use
it in GADT return types (at least, when it occurs in the
body). This can be problematic when one uses a GADT
to represent type witnesses:

type ’a u
type _ typ =
| Tint : int typ
| Tlist : ’a typ -> ’a list typ
| Tu : ’a typ -> ’a u typ

The first two cases, for int and list, create no problem,
but in the last case u is an abstract type, and the defi-
nition cannot be accepted.

There are two other place where injectivity matters
for GADTs: one is type refinement, where locally ab-
stract types can be refined during pattern matching; the
other is detection of impossible cases in pattern match-
ing, where one needs to know that a type is injective in
order to eliminate the case when type parameters differ.
Note however that this two problems do not even occur
as long as we cannot use abstract types in GADT return
types.

4 Solution

As mentioned just above, the solution to recover sound-
ness looks simple enough: one must assume that nothing
is known about abstract types, when they are used in pa-
rameter constraints or GADT return types.

However, life is always more complicated than that:
we also have private types, for which we can declare a
variance different from that of the body. Moreover, from
the point of view of injectivity, it turns out to be useful
to distinguish datatype definitions, in which a type pa-
rameter, even when it is bivariant, can only be modified
through subtyping, and type alias, for which some type
parameters may simply disappear through expansion.

As a result, OCaml 4.01 uses no less than 6 flags to
describe the variance of type parameters (it actually uses
7, but the last one is not relevant here):

• may pos and may neg are upper bounds of the pres-
ence of positive or negative occurrences in the real
definition; for abstract or private types, + indicates
{may pos}, - indicates {may neg}, and no variance
annotation means {may pos, may neg}.

• pos and neg are about known occurrences, they may
only be true if the actual definition is visible, i.e. the
type is not abstract.

• inv denotes a strong version of invariance: for
datatypes, a parameter is invariant if it has both
positive and negative occurrences; for aliases, it
must explicitly contain invariant occurrences.

• inj tells that a parameter is injective, i.e. it cannot
disappear through expansion. All datatype param-
eters are injective, i.e. the only way to change them

2



is through subtyping; but this is not true for type
aliases and abstract types.

These flags are related by the following implications:

inv ⇒ pos ∧ neg
pos ⇒ inj ∧ may pos
neg ⇒ inj ∧ may neg

Variances are sets of flags, closed by these implications.
The variance of an occurence is computed by composing
the variance of the context, which starts as the closure of
inv, pos or neg for parameter constraints, and pos for
the definition. They are composed pointwise: S1 ◦ S2 =
{f1 ◦ f2 | f1 ∈ S1, f2 ∈ S2}, using the following rules:

inv ◦ inj = inv neg ◦ pos = neg
inj ◦ inj = inj neg ◦ neg = pos
pos ◦ inv = inv may pos ◦ may pos = may pos
neg ◦ inv = inv may pos ◦ may neg = may neg
pos ◦ pos = pos may neg ◦ may pos = may neg
pos ◦ neg = neg may neg ◦ may neg = may pos

Note that this relation is not strictly symmetric: while
we have inv◦inj = inv, we do not have inj◦inv = inv.

The rationale is that, inside an invariant context, there
is no way to change anything by subtyping. So all injec-
tive occurrences become invariant. This is particularly
useful for GADTs, as index positions are always invari-
ant, so that type constructors used in indices need only
be injective. The opposite order is not true, as a context
may be injective and bivariant, in which case we can use
subtyping to remove an invariant occurrence:

type ’a t = T
let f x = (x : ’a ref t :> bool t)

While OCaml 4.01 implements this complex lattice to
represent variance, it adds no new syntax to describe
points in this lattice. That is, this lattice is exclusively
used to represent inferred variance information. In par-
ticular the lack of new variance annotations for type pa-
rameters means that abstract types are never injective.

To avoid failing on existing code, particularly code
using objects where constrained parameters are used for
sharing, OCaml 4.01 implements a slightly more clever
criterion for relating the variance of constrained param-
eters to the variance inside the definition. Namely, it
detects identical types appearing in the parameter and
in the definition, and in that case compares the variance
of the root.

type ’a u
type ’a t = T of ’a * ’b u
constraint ’a = <m : ’b u; ..>

This avoids failing due to the discrepancy between
may pos and pos for u.

5 Proposals

As we just stated, OCaml 4.01 adds no way to refine
the variance of abstract types. To overcome this, in the
presentation I would like to propose several extensions
which may help to deal with these problems.

Injectivity annotations A first natural step is to al-
low declaring that an abstract type is injective. This
would solve most of the limitations due to the loss of
known variance information, in particular in connection
with GADTs.

Some would argue that this should rather be a com-
piler flag, injectivity becoming progressively the default.

Newtypes A problem with injectivity annotations is
that many types are actually not injective to start with.
Namely, phantom types usually do not use their index
in their implementation. This is fine if they are defined
as datatypes, but in ML it is not unusual to use a type
alias.

Converting to datatypes solves the problem, but this
may require extensive changes in programs, and ineffi-
ciencies in the generated code.

Newtypes, as they exist already in Haskell, are just
datatypes with a single constructor. In OCaml, we could
go a bit further, to omit the constructor, and instead
use subtyping. Leo White suggested that the subtyping
could be done at the module interface level, which would
greatly reduce the need for coercions.

Unique types Once the problem of injectivity solved,
there remains another problem for GADTs: the exhaus-
tiveness check cannot prove the incompatibility of two
types when they differ only at the level of abstract types.
This is because there is no way to known whether two
abstract types could not be aliases for the same type.
Unique type annotations could help solving that prob-
lem.

3


