
Real-world debugging in OCaml

Mark Shinwell

Jane Street Europe

OCaml Users and Developers Workshop 2012

My program has a bug

• Everyday debugging: use printf.

• Don’t forget to flush: Printf.printf "foo\n%!"

• Know your standard Unix tools
• I’m not sure which server it connects to

strace foo_client.exe 2>&1 | grep connect

• I want to know which files it has open

lsof -p 12345

• I need to check where it finds input.txt

strings foo_client.exe | grep input.txt

My bug resists attempts to find it

• Make basic checks on the machine

• disk space, memory, errors in the system logs

• Ensure backtraces are enabled

• export OCAMLRUNPARAM=b

• Turn on core dumps

• ulimit -c unlimited

• Recompile your C stubs (and the OCaml runtime)

• No optimization: -O0

• With debugging info: -g

My program needs a debugger

• gdb does work with OCaml programs

• Support is significantly improved in OCaml 4.00

• backtraces

• source file locations

• Names in the debugger are mangled

• camlList iter 1074 ≡ List.iter

• Printing and traversal of OCaml values can be tricky

My gdb-foo is awful

• New program: gdb --args myprogram.exe --foo --bar

• Attach to running program: gdb -p 14001

• Useful commands:
• r and c – run / continue running program
• b – set breakpoint
• [thr apply all] bt – backtrace [for all threads]
• inf thr – state of all threads
• p and x – examine values and memory
• step and next – single stepping
• inf reg – state of CPU registers
• Ctrl+C and q – return to / exit from debugger

My program needs to be stopped... just here

• Breakpoint conditions in gdb can be hard to use

• the condition may be hard to express

• decoding the OCaml values makes this doubly hard

• Send a stop signal to yourself and then attach gdb

let draw_shape ~x ~y = function

| Square when x < 200 ->

Low_level_debug.stop_me_now ()

| ...

My gdb backtrace is useless

• Dump the stack and look for code pointers:
(gdb) x/256x $rsp

...

7fffffffe3c0: 0000000a 00000000 0070d708 00000000

7fffffffe3d0: 000050b5 00000000 006b51c5 00000000

7fffffffe3e0: 00bf1338 00000000 ab515268 00002aaa

• Turn a code pointer into a function name using objdump:
00000000006b51a0 <camlList iter 1074>:

...

6b51c5 : 48 8b 04 24 mov (%rsp),%rax

My program fails with an uncaught exception

• Perhaps it fails before it actually does anything

• Top-level expression with a side effect?

• A backtrace may not be sufficient to find the bug
• Try to catch it before it exits:

(gdb) b caml_fatal_uncaught_exception

(gdb) r

...

(gdb) bt

My program exits at some random point

• Perhaps there is no exception visible, for whatever reason

• Set breakpoints:
(gdb) b exit

(gdb) b caml_sys_exit

• gdb can go back in time
sourceware.org/gdb/wiki/ReverseDebug

My code is camoflaging the real exception

• With Core on x86-64: backtraces on demand
let f x =

...

Printf.eprintf "f was called from: %s\n%!"

(Backtrace.to_string (Backtrace.get ()));

...

• Can also be invoked from inside gdb
(gdb) call backtrace_dump_stderr()

My program segfaults

kernel: myprogram[14001]: segfault at 00002aaaac001280

rip 0000000000e000f8 rsp 7fffffffffdd0000 error 15

• The information is

• the process name and ID

• which address the program was trying to access

• which instruction caused the fault

• the stack pointer at the time of the fault

• what was attempted (e.g. an instruction fetch)

My code shouldn’t segfault!

• Stack overflow

• backtrace may show excessive number of stack frames

• increase stack limit: ulimit -s

• Corruption in the Caml heap

• segfault often lies in the GC (e.g. caml oldify one)

• usually caused by faulty C bindings

• Hardware failure

• the instruction pointer may be way outside your code

• check the system logs for excessive segfaults

My program deadlocks

• Should be evident using ”info threads” in gdb

• One thread wants mutex B whilst holding mutex A

• Another thread wants mutex A whilst holding mutex B

My C bindings seem to be faulty

• Read them carefully

• Every variable that is live across an allocation point

• Every block where you release the runtime lock

• If you use a CAML... macro, always use CAMLreturn

• Run the program under valgrind

• Will not catch corruption within the Caml heap

• (Re-)write them carefully

• Use assert to check values are what you think they are

• Don’t release the runtime lock unless you really have to.

My C bindings still seem to be faulty

• Use of the GC registration macros at every possible
opportunity does not guarantee correctness:

value works_most_of_the_time(value v_filename)

{

CAMLparam1(v_filename);

char* filename = String_val(v_filename);

caml_enter_blocking_section();

takes_a_long_time(filename);

caml_leave_blocking_section();

CAMLreturn(Val_unit);

}

Conclusion

• Standard tools can be used to debug OCaml

• OCaml 4 offers significant improvements

• Don’t forget: there’s a logical explanation for every bug

