Real-world debugging in OCaml

Mark Shinwell

Jane Street Europe

OCaml Users and Developers Workshop 2012

My program has a bug

e Everyday debugging: use printf.

o Don’t forget to flush: Printf.printf "foo\n%!"

e Know your standard Unix tools
e I’'m not sure which server it connects to
strace foo_client.exe 2>&1 | grep connect
¢ | want to know which files it has open
1sof -p 12345
¢ | need to check where it finds input.txt

strings foo_client.exe | grep input.txt
g

£ & JANE STREET

IS

My bug resists attempts to find it

Make basic checks on the machine

o disk space, memory, errors in the system logs

Ensure backtraces are enabled

e export OCAMLRUNPARAM=b

Turn on core dumps

e ulimit -c unlimited

Recompile your C stubs (and the OCaml runtime)
e No optimization: -00

o With debugging info: -g

g

£ & JANE STREET

5SS

My program needs a debugger

e gdb does work with OCaml programs
e Support is significantly improved in OCaml 4.00

e backtraces

¢ source file locations
e Names in the debugger are mangled

e camllist__iter_ 1074 = List.iter
e Printing and traversal of OCaml values can be tricky

g

£ & JANE STREET

IS

My gdb-foo is awful

e New program: gdb --args myprogram.exe --foo --bar

e Attach to running program: gdb -p 14001

e Useful commands:
e r and ¢ —run/ continue running program
e b — set breakpoint
e [thr apply all] bt — backtrace [for all threads]
e inf thr — state of all threads
e p and x — examine values and memory
e step and next — single stepping
e inf reg — state of CPU registers
e Ctrl+C and q — return to / exit from debugger

é

s
S
S

% JANE STREET

<
/

ffrxs&x\\\

My program needs to be stopped... just here

e Breakpoint conditions in gdb can be hard to use

» the condition may be hard to express
e decoding the OCaml values makes this doubly hard

e Send a stop signal to yourself and then attach gdb

let draw_shape "x "y = function
| Square when x < 200 ->
Low_level_debug.stop_me_now ()

Sy,

&0 JANE STREET

S

My gdb backtrace is useless

e Dump the stack and look for code pointers:
(gdb) x/256x $rsp

7fffffffe3cO0: 0000000a 00000000 Helexfolsyfelsh 00000000
7fffffffe3d0: 000050b5 00000000 N eiNkelsy 00000000
7fffffffe3e0: 00bf1338 00000000 ab515268 00002aaa

e Turn a code pointer into a function name using objdump:
00000000006b51a0 <camlList_ iter 1074>:

ISR : 48 8b 04 24 mov (%rsp),’rax

% JANE STREET

2 2
5SS

My program fails with an uncaught exception

e Perhaps it fails before it actually does anything

o Top-level expression with a side effect?

¢ A backtrace may not be sufficient to find the bug
e Try to catch it before it exits:

(gdb) b caml_fatal_uncaught_exception
(gdb) r

(gdb) bt

S

£ & JANE STREET

S

TS

My program exits at some random point

e Perhaps there is no exception visible, for whatever reason

e Set breakpoints:

(gdb) b exit
(gdb) b caml_sys_exit

e gdb can go back in time

sourceware.org/gdb/wiki/ReverseDebug

% JANE STREET

Z
IS

My code is camoflaging the real exception

e With Core on x86-64: backtraces on demand
let £ x =

Printf.eprintf "f was called from: %s\n¥%!"
(Backtrace.to_string (Backtrace.get ()));

e Can also be invoked from inside gdb
(gdb) call backtrace_dump_stderr()

% JANE STREET

Z
IS

My program segfaults

kernel: myprogram[14001]: segfault at 00002aaaac001280
rip JOefolelololelolelortolelofks] rsp 7fffffffffddO000 error 15

e The information is

e the process name and ID

which address the program was trying to access

which instruction caused the fault

the stack pointer at the time of the fault

what was attempted (e.g. an instruction fetch)

€ JANE STREET

Z S
5SS

My code shouldn’t segfault!

o Stack overflow
e backtirace may show excessive number of stack frames
e increase stack limit: ulimit -s
e Corruption in the Caml heap
o segfault often lies in the GC (e.g. caml_oldify_one)
o usually caused by faulty C bindings

¢ the instruction pointer may be way outside your code

e Hardware failure

e check the system logs for excessive segfaults
SLA

£% JANE STREET

s

A&
IS

My program deadlocks

e Should be evident using "info threads”in gdb

¢ One thread wants mutex B whilst holding mutex A
e Another thread wants mutex A whilst holding mutex B

e

£ & JANE STREET

S

TS

My C bindings seem to be faulty

e Read them carefully
o Every variable that is live across an allocation point
e Every block where you release the runtime lock
o |f you use a CAML. .. macro, always use CAMLreturn
e Run the program under valgrind
o Will not catch corruption within the Caml heap
¢ (Re-)write them carefully
e Use assert to check values are what you think they are
e Don'’t release the runtime lock unless you really have to.

S

"% JANE STREET

rs& S

\

S\\\

S
I}

My C bindings still seem to be faulty

e Use of the GC registration macros at every possible
opportunity does not guarantee correctness:

value works_most_of_the_time(value v_filename)
{
CAMLparaml (v_filename) ;
char* filename = String_val(v_filename) ;
caml_enter_blocking_section();
takes_a_long_time(filename);
caml_leave_blocking_section();
CAMLreturn(Val_unit);

%

% JANE STREET

%%v

Conclusion

e Standard tools can be used to debug OCaml

o OCaml 4 offers significant improvements

e Don't forget: there’s a logical explanation for every bug

\\\

i,
xJH

5SS

£ JANE STREET

\\\S

f S

