The Memory Behavior Of OCaml Programs
OUD 2012

1,23
1

Cagdas Bozman

Thomas Gazagnaire

Fabrice Le Fessant?
Michel Mauny?

OCamlPro® | INRIA? | ENSTA-ParisTech®

14 Sept. 2012

Memory Problems

m What ?

m Study the memory behavior of OCaml programs
m Memory profiling tools

m Why 7
m To decrease memory footprint
m To fix memory leaks
m To spend less time in memory management

Using Too Much Memory

m Applications that use too much memory

m Impact: applications with big memory usage (symbolic computation
tools, etc.)

m Which type would you choose between t; and t,?

type t1 = {
f1: float;
£2: float; type t2 = (float * float)

}

Using Too Much Memory

m Applications that use too much memory

m Impact: applications with big memory usage (symbolic computation
tools, etc.)

m Which type would you choose between t; and t,7 t;

type t1 = {
f1: float; 8/8 bytes type t2 = (float * float)
£2: float; 8/8 bytes = 32/48 bytes

}

=16/16 bytes

m Causes: bad data representation, bad use of collection, etc.

Memory Leaks

m Applications that fail to free the memory they have used
m Add values to a collection and never remove them
try
Hashtbl.add tbl x y;
do_something that may _fail tbl;
Hashtbl.remove tbl x
with _ — O

m Equivalent of malloc() without free() in C

Cost Of Memory Management

m Spending too much time in memory management
[
let rec x = ref 1.0 in
for i=1 to 1.000_.000_000 do
x :=1. *x. Ix
done;
I'x . 1.0

m with x. 1.0: 1.8s
m without: 3.6s

m Need tools to understand when and why memory is allocated

Consequences

m Best case:
slow the application (swapping, garbage collection time)

m Worst case:
run out of memory = crash

6/16

Tooling

m What kind of tools we are developing to help to understand memory
usage ?

m Allocation Profiler
m Region Inference
m Snapshot Memory Profiler

m Continuous Memory Profiler

Allocation Profiling

Profile where an application allocates memory

Inspired from the Poor's man method

m record information on the stack state periodically after some
allocation events.

Display allocation hotspots
Approximated call graph, weighted by the number of bytes allocated

Need only to be linked with a modified runtime (libasmrun.a), to
save backtraces at sampling points

m Use OCAMLRUNPARAM to set sampling rate

Allocation Profiling - Demo

Link ocamlopt.opt with the modified runtime

Configure sampling rate
export OCAMLRUNPARAM=M=4k

Run your program — save stack backtraces in mem.out
ocamlopt.opt -¢ -I */ typing/*.ml

Generate a json file

ocp—memprof -space-prof mem.out -format json

Here is the graph (next slide)

Allocation Profiling - ocamlopt.opt

Parsing
(Pparse.file) Register allocation
(Asmgen.regalloc)

Typing
(Typemod.type_implementation) Vi
r 4 '
& <
AR
& n
L 4 f’.....
y .,

10/16

Region Inference

m Approximating values lifetime using Region Inference [Tofte and
Talpin]

m every value is assigned to a region
m region is a kind of lexical scope

m Annotations help us to understand values interferences
= easier tracking of unwanted values in a region

11/16

ence - Example

let tbll = Hashtbl.create 3
let tbl2 = Hashtbl.create 3

let x11 = (1, 1)
let x12 = (1, 2)
let x21 = (2, 1)
let x22 = (2, 2)

let add tbll = Hashtbl.replace tbll
let add thl2 = Hashtbl.replace tbl2

let f_tbll cond =
if cond then
add_tb11 x11 11
else

let f_tbl2 cond =
if cond then
add_tb12 x21 21
else
add tbl2 x22 22

let =
add_th11 x11 11;
add_thll x12 12;
add_tbl2 x21 21;
add tbl2 x22 22

let thll = Hashtbl.create 3
let thl2 = Hashtbl.create 3

let x11 = (1, 1)
let x12 = (1, 2)
let %21 = (2, 1)
let x22 = (2, 2)

let add tbll = Hashtbl.replace tbll
let add_tbl2 = Hashtbl.replace tbl2

let f tbll cond =
if cond then
add thll x11 11
else

let f_tbl2 cond =
if cond then
add th12 x21 21
else
add_thl2 x22 22

let =
add tbl1l x11 11
add_tb1l1 x12 12;
add_tb1l2 x21 21;
add_tbl2 x22 22

12/16

Snapshot Profiling

m Work in progress
m Detailed liveness informations
m We have:
m Dumps of memory graph
m We want:
m Recover types and names: what type/value eats all my memory ?

13/16

Snapshot Profiling - Graph

$ ocamlopt.opt -c -I utils -I parsing -I typing typing/*.ml

‘ types 35.820,947 values x GC — |
@
3)
3
. unknown
D Reg.t
2,500k D Types.type_expr
I setMaket
D Laxing.position
2,000k B Tyeestype_desc

. string

. Mach.instruction

. Lacation.t

I:l Ident.t

. Mach.operation

D Lambda.lambda

D Inter. BitMatrix buckat
Path.t

D Typediree axprassion
500k Types.value description

1,500k

1,000k 4

14 /16

Continuous Profiling

m Work in progress
m Global memory behavior
m We have:
m Log allocation and GC events
= We want:
m Extract useful things from raw data

15/16

Conclusion

Tools:
m Allocation Profiler: allocations hotspots
m Region Inference: values interaction
m Snapshot Memory Profiler: detailed liveness information

m Continuous Memory Profiler: global memory behavior

Futur Works:
m Display tools
m Recover more types (snapshot)

m Recover memory blocks lifetime (continuous)

16 /16

