
The Memory Behavior Of OCaml Programs
OUD 2012

Çagdas Bozman1,2,3

Thomas Gazagnaire1

Fabrice Le Fessant2

Michel Mauny3

OCamlPro1 | INRIA2 | ENSTA-ParisTech3

14 Sept. 2012

1 / 16

Memory Problems

What ?

Study the memory behavior of OCaml programs
Memory profiling tools

Why ?

To decrease memory footprint
To fix memory leaks
To spend less time in memory management

2 / 16

Using Too Much Memory

Applications that use too much memory

Impact: applications with big memory usage (symbolic computation
tools, etc.)

Which type would you choose between t1 and t2?

type t1 = {
f1: float;

f2: float;

}
type t2 = (float * float)

3 / 16

Using Too Much Memory

Applications that use too much memory

Impact: applications with big memory usage (symbolic computation
tools, etc.)

Which type would you choose between t1 and t2? t1

type t1 = {
f1: float; 8/8 bytes

f2: float; 8/8 bytes

}
⇒16/16 bytes

type t2 = (float * float)

⇒ 32/48 bytes

Causes: bad data representation, bad use of collection, etc.

3 / 16

Memory Leaks

Applications that fail to free the memory they have used

Add values to a collection and never remove them

try

Hashtbl.add tbl x y;

do something that may fail tbl;

Hashtbl.remove tbl x

with → ()

Equivalent of malloc() without free() in C

4 / 16

Cost Of Memory Management

Spending too much time in memory management

let rec x = ref 1.0 in

for i=1 to 1 000 000 000 do

x := 1. *. !x

done;

!x *. 1.0

with *. 1.0: 1.8s
without: 3.6s

Need tools to understand when and why memory is allocated

5 / 16

Consequences

Best case:
slow the application (swapping, garbage collection time)

Worst case:
run out of memory ⇒ crash

6 / 16

Tooling

What kind of tools we are developing to help to understand memory
usage ?

Allocation Profiler

Region Inference

Snapshot Memory Profiler

Continuous Memory Profiler

7 / 16

Allocation Profiling

Profile where an application allocates memory

Inspired from the Poor’s man method

record information on the stack state periodically after some
allocation events.

Display allocation hotspots

Approximated call graph, weighted by the number of bytes allocated

Need only to be linked with a modified runtime (libasmrun.a), to
save backtraces at sampling points

Use OCAMLRUNPARAM to set sampling rate

8 / 16

Allocation Profiling - Demo

1 Link ocamlopt.opt with the modified runtime

2 Configure sampling rate
export OCAMLRUNPARAM=M=4k

3 Run your program → save stack backtraces in mem.out

ocamlopt.opt -c -I */ typing/*.ml

4 Generate a json file
ocp-memprof -space-prof mem.out -format json

5 Here is the graph (next slide)

9 / 16

Allocation Profiling - ocamlopt.opt

10 / 16

Region Inference

Approximating values lifetime using Region Inference [Tofte and
Talpin]

every value is assigned to a region
region is a kind of lexical scope

Annotations help us to understand values interferences
⇒ easier tracking of unwanted values in a region

11 / 16

Region Inference - Example

12 / 16

Snapshot Profiling

Work in progress

Detailed liveness informations

We have:

Dumps of memory graph

We want:

Recover types and names: what type/value eats all my memory ?

13 / 16

Snapshot Profiling - Graph

$ ocamlopt.opt -c -I utils -I parsing -I typing typing/*.ml

14 / 16

Continuous Profiling

Work in progress

Global memory behavior

We have:

Log allocation and GC events

We want:

Extract useful things from raw data

15 / 16

Conclusion

Tools:

Allocation Profiler: allocations hotspots

Region Inference: values interaction

Snapshot Memory Profiler: detailed liveness information

Continuous Memory Profiler: global memory behavior

Futur Works:

Display tools

Recover more types (snapshot)

Recover memory blocks lifetime (continuous)

16 / 16

