A memory model for multicore OCaml

Stephen Dolan

KC Sivaramakrishnan

University of Cambridge

Introduction

When multiple threads are executed in parallel, the
results of reading and writing to shared references
can be surprising. For instance, suppose that the
following two snippets of code run in parallel, where
x and y are integer references initially 0:

thread 1:
1. x :=1;
2. let a = !y in

thread 2:
3.y :=1

4. let b = !x in

This could result in a=0, b=1, or in b=0, a=1 if
one of the threads runs to completion before the other
begins. Surprisingly, on most machines, it could also
result in a=0, b=0, due to a hardware optimisation
called store buffering.

This and other even more surprising behaviours are
possible due to optimisations performed by hardware,
optimisations performed by compilers, and complex
interactions between them. Specifying the precise
behaviour of shared references sufficiently clearly that
programmers can reason about them is the job of the
memory model.

Generally, programs should use high-level synchroni-
sation constructs like fork/join or Reagents rather than
dealing directly with shared mutable state, making the
details of memory models irrelevant. However, certain
low-level, high-performance concurrency libraries need
efficient memory primitives, and a detailed memory
model is necessary to know what they do.

We propose a memory model for OCaml, broadly
following the design of axiomatic memory models for
languages such as C++ and Java, but with a number
of differences to provide stronger guarantees and
easier reasoning to the programmer, at the expense
of not admitting every possible optimisation.

Here, we concentrate mostly on the design goals
and general properties of the memory model. An intro-
duction to the details for non-experts is available at:

https://github.com/ocamllabs/ocaml-
multicore/wiki/Memory-model

For memory-model experts, a formalisation of the
memory model using the herd [1] tool is available at:

https://github.com/ocamllabs/ocaml-memory-model

The compilation scheme for the memory model to
weakly-ordered PowerPC machines has been proven
(on paper), and mechanically verified for small litmus
tests (using the memalloy tool [2]).

Atomics and data races

Like many languages, we distinguish atomic and
non-atomic locations. The mutable locations available
in current OCaml (ref cells, mutable fields, mutable
object instance variables) are classed as non-atomic,
and atomic references are available through the new
Atomic module. Atomic locations have sequentially
consistent behaviour, while non-atomic locations admit
some relaxed behaviours (but are more efficient).

Atomic locations should be used whenever a
variable is used for synchronisation between multiple
threads. For instance, the following program uses
a flag of type bool Atomic.t (initially false) and
a variable message of type int ref (initially 0) to
send a message between threads:

thread 1:
1. message := 42
2. Atomic.set flag true

thread 2:

3. let seen = Atomic.get flag in
4. let value = !message in

5. if seen then print_int value;

If the flag were an ordinary reference instead of an
Atomic.t, then it would be possible for this program
to print 0, since lines 1 and 2 would not be executed
in any particular order (nor lines 3 and 4).

A program with no concurrent accesses (except con-
current reads) to the same non-atomic location is said
to be data-race free. Data-race freedom is an prop-
erty that programs should strive for: data-race-free
programs have sequentially consistent behaviour, and
need not worry about strange relaxed memory effects.

The C++ memory model imposes data-race
freedom as a burden on the programmer: the compiler
is allowed to assume that the program has no data
races, and programs with data races have undefined
behaviour. That is, if two threads race on a non-
atomic boolean flag, the result is not that the flag’s
value is unpredictable, but that the entire program
may do anything at all. This is not compositional:
a race in one part of the program can in principle
cause an unrelated part to give the wrong answer. In
practice, inlining followed by aggressive optimisations



can make “unrelated” parts of the program to have
more subtle interactions than one might imagine.
Our proposed memory model does not make an
assumption of data race freedom. It is still advisable
to avoid data races: reasoning about behaviour in
the presence of data races is difficult. However, a
data race on a particular non-atomic location will
make only accesses to that location difficult to reason
about, rather than infecting the entire program.

Compilation scheme

Compilation to machines with relatively strong mem-
ory models such as x86 is straightforward: non-atomic
accesses map to ordinary load and store instructions,
and atomic accesses map to atomic instructions.
The challenging case is compilation to weakly-
ordered machines such as ARM and PowerPC.
Naively compiling non-atomic accesses to ordinary
loads and stores will expose the programmer to some
truly odd behaviour, and when compiling atomics a
careful choice must be made between the various levels
of atomicity and ordering the instruction set provides.
The most important tricky case in our compilation
scheme concerns initialisation of newly-allocated ob-
jects. If one thread performs x := (1, 2), then if
another thread running in parallel reads x and sees the
new tuple, it must also see the correct contents rather
than uninitialised memory. On ARM and PowerPC
machines, this will not happen by default as those ma-
chines maintain the ordering of neither loads nor stores.
A similar issue arises in the Java memory model.
The general solution is that a fence instruction must be
inserted somewhere between the initialisation and the
publication of the object (that is, the mutation that
makes it accessible from other threads). Java chooses
to place this fence just after initialisation, to preserve
the performance of mutation. We choose to place
this fence on those mutations which may publish new
objects, to preserve the performance of functional code.

Compiler optimisations

We aim not to inhibit the sort of compiler optimisa-
tions that OCaml currently does, although preserving
maximum freedom for the compiler to optimise is
a lesser goal with our proposal than ensuring it is
possible to reason about even racy programs.

To our knowledge, the OCaml compiler currently
does no optimisations incompatible with our proposal,
although the proposal does somewhat constrain which
optimisations may be applied in future. An example
of such an optimisation, which would be incompatible
with our proposed memory model, is rematerialisation
of loads to mutable locations. That is, a compiler
for a single-threaded language may validly transform
the following code:

let a = !global in
let b=x +y in
let c=a+1in

into the following:

let a = !global in
let b=x +y in
let ¢ = !global + 1 in

on the basis that !global cannot change during the
computation of x+y. (It is not usually profitable to
introduce more memory accesses, but it can be under
high register pressure).

This optimisation is incompatible with our proposal,
as are others which introduce new memory accesses
to shared mutable state. However, we believe that
this will not be unduly constraining for OCaml,
and the benefits of being able to reason about all
programs outweigh the cost of missed optimisation
opportunities. The converse optimisation, eliminating
redundant memory accesses, is much more important
and is compatible with the proposal.

Discussion and future work

Memory models are subtle beasts, and it is difficult to
do justice to one in two pages. Nonetheless, we believe
that the model proposed here is reasonably efficient
on current hardware, while providing guarantees to
the programmer strong enough to reason about.

With the in-development arm64 backend for mul-
ticore OCaml, we have begun experimenting with the
memory model’s implementation on weakly-ordered
processors, and our next task is detailed performance
testing of programs using atomic variables for syn-
chronisation. On the theory side, future work involves
mechanised proofs of correctness for the compilation
schemes and validity of optimisations (currently, we
have only informal paper proofs, supplemented with
exhaustive testing for small programs).

Acknowledgements We thank Mark Batty,
Peter Sewell, Susmit Sarkar and Shaked Flur for
memory-model discussions, and John Wickerson for
help testing the compilation schemes to PowerPC.

References

[1] J. Alglave, L. Maranget, and M. Tautschnig.
Herding cats: Modelling, simulation, testing,
and data mining for weak memory. TOPLAS,
36(2):7:1-7:74, July 2014.

[2] J. Wickerson, M. Batty, T. Sorensen, and G. A.
Constantinides. Automatically comparing memory
consistency models. In POPL 17, pages 190-204.
ACM, 2017.



