
A Simple and Practical Linear Algebra
Library Interface with Static Size Checking ∗

Akinori Abe Eijiro Sumii
Tohoku University

{abe,sumii}@kb.ecei.tohoku.ac.jp

1. Introduction
While advanced type systems—specifically, dependent types on
natural numbers—can statically ensure consistency among the
sizes of collections such as lists and arrays [1, 2, 8], such type
systems generally require non-trivial changes to existing languages
and application programs, or tricky type-level programming. We
have developed a linear algebra library interface that guarantees
consistency (with respect to dimensions) of matrix (and vector)
operations by using generative phantom types as fresh identifiers
for statically checking the equality of sizes (i.e., dimensions). This
interface has three attractive features in particular.

• It can be implemented only using fairly standard ML types
and its module system. Indeed, we implemented the interface
in OCaml (without significant extensions like GADTs) as a
wrapper for an existing library.

• For most high-level operations on matrices (e.g., addition and
multiplication), the consistency of sizes is verified statically.
(Certain low-level operations, like accesses to elements by in-
dices, need dynamic checks.)

• Application programs in a traditional linear algebra library
can be easily migrated to our interface. Most of the required
changes can be made mechanically.

To evaluate the usability of our interface, we ported to it a practi-
cal machine learning library (OCaml-GPR [4]) from an existing lin-
ear algebra library (Lacaml [5]), thereby ensuring the consistency
of sizes.

2. Our idea
Let ’n vec be the type of ’n-dimensional vectors and (’m, ’n) mat
be the type of ’m-by-’n matrices. The formal type parameters ’m
and ’n are instantiated with actual types that represent the sizes of
the vectors or matrices. Here we only explain how the dimensions
of vectors are represented since those of matrices can be similarly
represented.

The abstract type ’n vec can be implemented as any data type
that can represent vectors, e.g., float array, where the type pa-
rameter ’n is phantom, meaning that it does not appear on the right
hand side of the type definition. A phantom type parameter is of-
ten instantiated with a type that has no value (i.e., no constructor),
which we call a phantom type1. The type ’n vec must be made
abstract by hiding its implementation in the module signature so
that the size information in the (phantom) type parameter ’n is not
ignored by the typechecker.

∗ This work was partially supported by JSPS KAKENHI Grant Numbers
22300005 and 25540001, and by Mitsubishi Foundation Research Grants
in the Natural Sciences.
1 This term is used differently in some other papers.

It is relatively straightforward to represent dimensions (size
information) as types by, for example, using type-level natural
numbers when this information is decided at compile time. The
main problem is how to represent dimensions that are unknown
until runtime. Consider the following code for example:

let (x : ?1 vec) = loadvec "file1" in
let (y : ?2 vec) = loadvec "file2" in
add x y (* ’n vec -> ’n vec -> ’n vec *)

The function loadvec of type string -> ? vec returns a vec-
tor of some dimension, loaded from the given path. The third line
should be ill-typed because the dimensions of x and y are probably
different. (Even if "file1" and "file2" were the same path, the
addition should be ill-typed because the file might change between
the two loads.) Thus, the return type of loadvec should be different
every time it is called (regardless of the specific values of the argu-
ment). We call such a return type generative because the function
returns a value of a fresh type for each call.

The vector type with generative size information essentially cor-
responds to an existentially quantified sized type like ∃n. n vec.
Our basic idea is to verify only the equality of dimensions by repre-
senting them as (only) generative phantom types. We implemented
this idea in OCaml (partly using first-class modules for packages
of types like ∃n. n vec) and carried out a realistic case study to
demonstrate that it is mostly straightforward to write (or port) ap-
plication programs by using our interface (see Section 4 for details).

3. Typing of BLAS and LAPACK functions
BLAS (Basic Linear Algebra Subprograms) [6] and LAPACK (Lin-
ear Algebra PACKage) [7] are the major linear algebra libraries for
Fortran. To evaluate the effectiveness of our idea, we implemented
a linear algebra library interface as a “more statically typed” wrap-
per of Lacaml, which is a BLAS and LAPACK binding in OCaml.
Our interface is largely similar to Lacaml so that existing applica-
tion programs can be easily ported. Here we explain several tech-
niques required for typing the BLAS and LAPACK functions.

3.1 Transpose flags for matrices
In BLAS, gemm multiplies two general matrices:

val gemm : ?beta:num_type -> ?c:mat (*C *) ->
?transa:[‘N|‘T|‘C] -> ?alpha:num_type -> mat (*A *) ->
?transb:[‘N|‘T|‘C] -> mat (*B *) -> mat (*C *)

Basically, it executes C := αAB + βC. The parameters transa
and transb specify no transpose (‘N), transpose (‘T), or conjugate
transpose (‘C) of the matrices A and B. For example, if transa=‘N
and transb=‘T, then gemm executes C := αAB> + βC. Thus,
the types (dimensions) of the matrices change depending on the

values of the flags (the transpose of an m-by-n matrix is an n-by-
mmatrix). To implement this behavior, we give each transpose flag
a function type that represents the change in types induced by that
particular transposition, like:

type ’a trans (* = [‘N | ‘T | ‘C] *)
val normal : ((’m,’n) mat->(’m,’n) mat) trans (* = ‘N *)
val trans : ((’m,’n) mat->(’n,’m) mat) trans (* = ‘T *)
val conjtr : ((’m,’n) mat->(’n,’m) mat) trans (* = ‘C *)
val gemm : ?beta:num_type -> ?c:(’m, ’n) mat (*C *) ->
transa:((’am, ’ak) mat -> (’m, ’k) mat) trans ->
?alpha:num_type -> (’am, ’ak) mat (*A *) ->
transb:((’bk, ’bn) mat -> (’k, ’n) mat) trans ->
(’bk, ’bn) mat (*B *) -> (’m, ’n) mat (*C *)

3.2 Side flags for square matrix multiplication
The BLAS function symm multiplies a symmetric matrix A by a
general matrix B:

val symm : ?side:[‘L|‘R] -> ?beta:num_type ->
?c:mat (*C *) -> ?alpha:num_type -> mat (*A *) ->
mat (*B *) -> mat (*C *)

The parameter side specifies the “direction” of the multiplication:
function symm executes C := αAB + βC if side is ‘L, and
C := αBA + βC if it is ‘R. If B and C are m-by-n matrices,
A is an m-by-m matrix in the former case and n-by-n in the latter
case. We implemented these flags as follows:

type (’k, ’m, ’n) side (* = [‘L | ‘R] *)
val left : (’m, ’m, ’n) side (* = ‘L *)
val right : (’n, ’m, ’n) side (* = ‘R *)

The parameter ’k in type (’k,’m,’n) side corresponds to the
dimension of the ’k-by-’k symmetric matrix A, and the other
parameters ’m and ’n correspond to the dimensions of the ’m-by-
’n general matrix B. When A is multiplied from the left by B
(i.e., AB), ’k is equal to ’m; therefore, the type of the flag left is
(’m,’m,’n) side. Conversely, if A is right-multiplied by B (i.e.,
BA), ’k is equal to ’n. Thus, the flag right is given the type
(’n,’m,’n) side. By using this trick, we can type symm as:

val symm : side:(’k,’m,’n) side -> ?beta:num_type ->
?c:(’m,’n) mat (*C *) -> ?alpha:num_type ->
(’k,’k) mat (*A *)-> (’m,’n) mat (*B *)-> (’m,’n) mat

The same trick can be applied to other square matrix multiplica-
tions as well.

3.3 Subtyping for discrete memory access
In Fortran, elements of a matrix are stored in column-major order in
a flat, contiguous memory region. BLAS and LAPACK functions
can take part of a matrix (like a row, a column, or a submatrix)
and use it for computation without copying the elements, so they
need to access the memory discretely in order to access the ele-
ments. However, some original functions of Lacaml do not support
such discrete access. For compatibility and soundness, we need to
prevent those functions from receiving (sub)matrices that require
discrete accesses while allowing the converse (i.e., the other func-
tions may receive contiguous matrices as well as discrete ones). We
achieved this by extending the type definition of matrices by adding
a third parameter for “contiguous or discrete” flags (in addition to
the existing two parameters for dimensions):

type (’m, ’n, ’cnt_or_dsc) mat (* ’m-by-’n matrices *)
type cnt (* phantom *)
type dsc (* phantom *)

Then, formal arguments that may be either contiguous or dis-
crete matrices are given type (’m,’n,’cnt_or_dsc) mat, while the
types of (formal) arguments that must be contiguous are speci-
fied in the form (’m,’n,cnt) mat. In contrast, return values that
may be either contiguous or discrete have type (’m,’n,dsc) mat,
while those that are known to be always contiguous are typed
(’m,’n,’cnt_or_dsc) mat so that they can be mixed with discrete
matrices.

3.4 Dynamic checks remaining
Although many high-level operations provided by BLAS and LA-
PACK can be statically verified by using the scheme described
above as far as equalities of dimensions are concerned, other op-
erations still require dynamic checks for inequalities:

• get and set operations allow accesses to an element of a matrix
by using the given indices, which must be less than the dimen-
sions of the matrix.

• As mentioned above, BLAS and LAPACK functions can take a
submatrix without copying it. Our original function submat re-
turns such a submatrix for the dimensions given. This submatrix
must be smaller than the original matrix.

• There are several high-level functions with specifications that
essentially involve submatrices and inequalities of indices, such
as syevr (for finding eigenvalues), orgqr, and ormqr (for QR
factorization).

• For most LAPACK functions, the workspace for computation
can be given as an argument. It must be larger than the mini-
mum workspace required as determined by each function (and
other arguments).

These inequalities are dynamically checked by our library in-
terface. We gave such functions the suffix _dyn, like get_dyn and
set_dyn (with the exception of the last case since almost all LA-
PACK functions can take the workspace as a parameter, with a size
that must be checked dynamically).

4. Porting of OCaml-GPR
We implemented our static size checking scheme as a linear al-
gebra library interface that we call SLAP (Sized Linear Alge-
bra Package, https://github.com/akabe/slap/) on top of La-
caml (https://bitbucket.org/mmottl/lacaml). To evaluate its
usability, we ported to it OCaml-GPR (https://bitbucket.org/
mmottl/gpr), a practical machine learning library for Gaussian pro-
cess regression, written using Lacaml by the same author. The
ported library (SGPR) is available at https://github.com/akabe/
sgpr.

Just to give a (very) rough feel for the library via a simple
(but non-trivial) example, the type of a function that “calculates
a covariance matrix of inputs given a kernel”

val calc_upper : Kernel.t -> Inputs.t -> mat

is augmented like

val calc_upper : (’D, _, _) Kernel.t ->
(’D, ’n) Inputs.t -> (’n, ’n, ’cnt_or_dsc) mat

indicating that it takes ’n vectors of dimension ’D and returns an
’n-by-’n contiguous matrix.

We classified the changes required for the porting into 19 cat-
egories. Due to lack of space, we outline only a few of them here
(see https://akabe.github.io/sgpr/changes.pdf for more de-
tails). Most of the changes could be made mechanically, including

• replacing the syntax sugar x.{i,j} with calls to get_dyn or
set_dyn functions (for index-based accesses to elements of
matrices or vectors).

https://github.com/akabe/slap/
https://bitbucket.org/mmottl/lacaml
https://bitbucket.org/mmottl/gpr
https://bitbucket.org/mmottl/gpr
https://github.com/akabe/sgpr
https://github.com/akabe/sgpr
https://akabe.github.io/sgpr/changes.pdf

• rewriting the transpose flags from ‘N, ‘T, and ‘C to normal,
trans, and conjtr (and similarly for side flags).

• removing dynamic size checking when the consistency of sizes
is already ensured by (static) types.

• changing the types vec and mat on the right hand side of a
type definition to (’n,’cd) vec and (’m,’n,’cd) mat, respec-
tively. It was then necessary to add the type parameters ’m,
’n, and ’cd on the left hand side. Theoretically, it suffices to
give fresh type parameters to all vec and mat (whenever neces-
sary, the type inference engine of OCaml unifies them automat-
ically). In practice, however, doing so introduced too many type
parameters in the OCaml-GPR library. We reduced the number
by unifying parameters known to be equal.

Other changes had to be made manually. For instance, when a
matrix operation is implemented by using low-level index-based
accesses, its size constraints cannot be inferred statically (since they
are checked only at runtime). It must therefore be type-annotated by
hand (or, alternatively, the operation must be re-implemented using
high-level functions). We encountered five such cases in OCaml-
GPR. Other cases include generative phantom types that escaped
their scopes and function types that depended on the values of
arguments.

Overall, 18.4 % of the lines of the code required some changes,
out of which (with some overlap) 15.4 % were mechanical and 3.6
% required a human brain.

5. Conclusions
Our proposed linear algebra library interface SLAP uses generative
phantom types to statically ensure that most operations on matrices
satisfy dimensional constraints. It is based on a simple idea—only
the equality of sizes needs to be verified—and can be realized by
using a fairly standard type and module system of ML. We imple-
mented this interface on top of Lacaml and then ported OCaml-
GPR to it. Most of the high-level matrix operations in the BLAS
and LAPACK linear algebra libraries were successfully typed, and
few non-trivial changes were required for the port.

We did not find any bug in Lacaml or OCaml-GPR, maybe
because both libraries have already been well tested and debugged
or carefully written in the first place. However, we conjecture that
our version of the libraries are particularly useful when developing
a new library or application program on top since they detect an
error not only earlier (i.e., at compile time instead of runtime)
but also at higher level; for instance, if the programmer misuses
a function of SGPR, an error is reported at the caller site rather
than somewhere deep inside the call stack from the function.

Using phantom and generative types for static size checking is
not novel [3]. Our contribution is the discovery that practical size
checking for a linear algebra library can be constructed on a simple
idea of verifying only the equality of sizes without significantly
restructuring application programs. Another difference is that we
use first-class modules in OCaml while [3] uses CPS encoding of
existential types using first-class polymorphism.

Interesting directions for future work include formalization of
the idea of generative phantom types and extension of the static
types to enable verification of inequalities (in addition to the present
verification of equalities), just to name a few.

References
[1] Wei-Ngan Chin and Siau-Cheng Khoo. Calculating sized types.

Higher-Order and Symbolic Computation, 14(2-3):261–300, 2001.
[2] Sa Cui, Kevin Donnelly, and Hongwei Xi. ATS: A language that

combines programming with theorem proving. In Bernhard Gramlich,
editor, FroCoS, volume 3717 of Lecture Notes in Computer Science,
pages 310–320. Springer, 2005.

[3] Oleg Kiselyov and Chung chieh Shan. Lightweight static capabilities.
Electr. Notes Theor. Comput. Sci., 174(7):79–104, 2007.

[4] Markus Mottl. OCaml-GPR – efficient Gaussian process regression in
OCaml. https://bitbucket.org/mmottl/gpr.

[5] Markus Mottl and Christophe Troestler. LACAML – linear algebra for
OCaml. https://bitbucket.org/mmottl/lacaml.

[6] NetLib. BLAS (Basic Linear Algebra Subprograms). http://www.
netlib.org/blas/.

[7] NetLib. LAPACK – Linear Algebra PACKage. http://www.netlib.
org/lapack/.

[8] Hongwei Xi. Dependent ML – an approach to practical programming
with dependent types. J. Funct. Program., 17(2):215–286, 2007.

https://bitbucket.org/mmottl/gpr
https://bitbucket.org/mmottl/lacaml
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/

	Introduction
	Our idea
	Typing of BLAS and LAPACK functions
	Transpose flags for matrices
	Side flags for square matrix multiplication
	Subtyping for discrete memory access
	Dynamic checks remaining

	Porting of OCaml-GPR
	Conclusions

