
Merlin, an assistant for editing Ocaml code

Frédéric Bour, Thomas Refis & Simon Castellan

June 16, 2013

1 Introduction

Merlin is a tool designed to provide assistance to programmers editing Ocaml code.
By offering features such as completion and interactive error reporting, it aims at im-

proving the coding experience, narrowing the gap between editors and “modern IDEs”.

1.1 Comparing with existing solutions

Other tools are developped with similar goals, most notably Typerex and Camlspotter,
though these don’t directly overlap with Merlin.

Whereas those tools work on files produced by the compiler (“cmt” files), Merlin address
the particular problem of working directly on the editor buffer. It should even be possible
to make those collaborate: by relying on Merlin to analyse and extract information from
the buffer then invoking other tools.

In this respect, Merlin can be seen as a collection of heuristics allowing to incrementally
parse and typecheck incomplete and/or partially incorrect codes.

2 General design

Starting with a demonstration, the presentation will focus on Merlin’s architecture, describ-
ing the steps needed to get from the content in the editor to showing back the result of the
analysis.

Largely reusing the OCaml compiler, it follows the traditional pipeline of a front-end,
lexer / parser / type checker, though somewhat tweaked to work in an incremental context.

2.1 Mimicking Proof-Assistants

The ocaml file is split in chunks that can be processed separately. These checkpoints are lo-
cated at each definition, when entering and leaving a structure (ignoring first class modules)
and more generally between all toplevel constructions found in ML modules.

This workflow comes from Proof-Assistants which have to deal with very complex con-
texts. Immediate feedbacks are of great help to the developer that can query the prover at
some determined points.

Here, the parsing is done in two passes: a first one to extract the potential checkpoints
and isolate syntactically incorrect parts, then a classic one is invoked to generate an AST
from extracted parts.

1



2.2 Cornercases

As the syntax of Ocaml has not been designed with such use in mind, particular precautions
have to be taken. Notably, the Ocaml parser has been heavily modified to better handle
error recovery.

Also, a few parts of the typer had to be patched to control some of its side effects and
relax some rules to ease interactive use.

2.3 Integration with editors

The merlin process communicates via a stream of JSON objects. Though still subject to
modifications, the protocol has been designed to make merlin easy to integrate in “dumb
editors” without leaking implementation details.

The goal of this part would be to show potential users that Merlin could be ported to
different editors (e.g. Eclipse) or tailored to suit particular needs with a reasonable amount
of work.

3 Current limitations

Most limitations come from the parsing step.

• Syntactic errors are particularly hard to deal with with current parser generators. The
original grammar had to be tweaked to handle more gracefully common errors, at the
cost of hampering support for future versions.

• CamlP4 syntax extensions are not supported, though some have been reimplemented.

• However, the future looks brighter with ppx extensions. With a few restrictions on
the extension behavior, it should be possible to transparently integrate this step in
the pipeline.

4 Roadmap

Points to be adressed in the future:

• on the parsing side, improve support for recursive definitions, classes and objects and
first-class modules.

• on the typing side, make use of contextual information like “is the cursor inside a
pattern, a type or an expression?” to direct analysis.

• try to implement more exotic extensions, like Eliom.

2


