
A new implementation of OCaml formats based on GADTs

Benoît Vaugon, ENSTA-ParisTech

June 7, 2013

1 Introduction

OCaml provides a Printf module inherited
from Caml-light more than a decade ago and
inspired from the C printf function. Its im-
plementation overrules the OCaml type system
by using “magic”, which makes it very hard to
maintain and evolve. We have implemented
a new safe version of modules Printf, Format
and Scanf that takes advantage of GADTs,
which is a feature only recently introduced in
OCaml. This new version improves the safety
and performance of the code while preserving
an almost complete compatibility with the old
one.

The talk will justify the interest of a new im-
plementation of formats in OCaml, show how
GADTs are useful and efficient to implement it
and discuss issues encountered during the im-
plementation.

There exist different styles to convert or
print values. For instance:

• In Java: System.out.println("n = "+ n);

• In PHP: echo "n = $n";

• In C: printf("n = %d", n);

The latter style, from which OCaml takes its
inspiration, has the advantage of separating
the format (or structure) from the data.

In OCaml, the Printf module provides
means to format data in order to output the re-
sult into streams, extensible buffers or strings.
The Format module is a superset of Printf. In
addition to the latter, it provides boxes that
are useful to pretty-print code as in the OCaml
compiler. Formats may also be used with the
Scanf module to extract data (by converting
them on the fly) from strings or streams.

It is important to note that the syntax for
formats is shared with the syntax for literal

strings. To manage this, the OCaml type-
checker uses a hack to recognize a format and
computes its type.

2 The current implementation

In the current implementation, at run time,
formats are represented by strings, which are
parsed at each printing and scanning function
call. More precisely, the printing functions wait
for arguments, read the format character by
character searching for a ’%’ or an ’@’, extract
the sub-format, call the C sprintf function to
convert arguments into strings, then print in a
stream or store in a buffer the resulting strings.

The scanning function similarly parses the
format and consumes the stream, converts
and accumulates extracted values onto a stack.
Then, if the conversions succeed, it calls the
callback function with extracted values as ar-
guments.

The implementation of modules Printf,
Format and Scanf uses Obj.magic to bypass the
OCaml type-checker. This approach may lead
to execution crashes. Number of use cases of
formats generating segmentation faults have
been found during the development.

In addition, this technique allocates lots of
intermediate closures and strings. It slow-
downs the execution and it is an issue in
OCaml projects for which allocations are criti-
cal.

Finally, the parsing of formats is written
multiple times in the library and the OCaml
type-checker, bringing formats incompatibili-
ties (which also cause crashes) between the
type-checker and the library.

1

3 Which new implementation?

There are different ways to implement a safe
and more efficient version of printing and
scanning functions, that may or may not use
GADTs.

An interesting idea is to implement formats
as a triplet containing a printing function, a
scanning function and a string representing
the format. For instance, format "Hello %d%!"
may be implemented by:
((fun out print_s box_f flush k n ->

print_s out "Hello ";
print_s out (string_of_int n);
flush out;
k out),

(fun stream callback ->
check_string stream "Hello ";
let n = read_int stream in
check_end_of_stream stream;
callback n),

"Hello %d%!")

With this implementation of formats, the
printing and scanning functions just have to
call a member of the format with the right
parameters. For instance, the Printf.bprintf

function would be implemented as follows:
let bprintf buf (print, _, _) =
let out = buf
and print_s = Buffer.add_string
and box_f _ = ()
and flush _ = ()
and kont _ = () in
print out print_s box_f flush kont

We notice that, for compactness of the code,
generic printing, formatting and flushing func-
tions are passed as arguments. This slightly
causes a slow-down. Lots of variants of this
code may be implemented to improve effi-
ciency, for instance by specialising the format
functions for streams, buffers and strings.

In practice, all implementations of this kind
generate huge codes and, in my opinion, are
less elegant and enjoyable than GADTs ap-
proaches.

4 The new implementation

The new implementation uses GADTs instead
of strings to represent formats at run time. The

declaration of the format type looks like:

type (’a,’b,’c,’d,’e,’f) format6 =
| Char : (* %c *)

(’a,’b,’c,’d,’e,’f) format6 ->
(char->’a,’b,’c,’d,’e,’f) format6

| Bool : (* %B *)
(’a,’b,’c,’d,’e,’f) format6 ->

(bool->’a,’b,’c,’d,’e,’f) format6
| Flush : (* %! *)

(’a,’b,’c,’d,’e,’f) format6 ->
(’a,’b,’c,’d,’e,’f) format6

| String_literal : (* "..." *)
string *
(’a,’b,’c,’d,’e,’f) format6 ->

(’a,’b,’c,’d,’e,’f) format6
| [...]
| End_of_format

(’f, ’b, ’c, ’e, ’e, ’f) format6

For instance, the GADT value associated to
format "Hello %d%!" looks like:

String_literal ("Hello ",
Int (Iconv_d, No_padding ,

No_precision ,
Flush End_of_format))

and is statically computed and pre-allocated in
the data segment by the OCaml compilers.

At type-check time, the OCaml type-checker
recognizes formats as it is done in the current
implementation (by matching “literal strings”
with the “format type”), but the type-inference
of the format is different. The constant string
extracted from the source code, representing
the format, is converted into a GADT value by
a call to the unique parsing function shared
with the standard library (remember that for-
mat syntax "%{...%}" can be used by scanning
functions to extract a format from the stream).
This GADT value is then converted into an “Ab-
stract Syntax Sub-Tree” that is re-injected into
the type-checker. The type of the format is
not “manually” (or “magically”) computed as
in the current implementation. Instead, it is
computed according to the format type defini-
tion (see the definition of format6 above) using
the standard GADT typing rules.

This mechanism ensures format compatibil-
ities between the type-checker and the library.
It also factorizes the implementation of format
parsing.

At print time, the format (which is a GADT
value) is “converted” to functions. These func-
tions take, as parameters, the heterogeneous
values to be printed, and store them in an
accumulator implemented by a heterogeneous
linked list (thanks to GADTs). When all ar-
guments are received (i.e, End_of_format is
encountered), the accumulator elements are
printed at once.

It is important to notice that the printing
must be delayed until all arguments are re-
ceived. Otherwise, the following code:

Array.iteri (printf "tab[%d] = %d\n")
[| 41 ; 42 ; 43 |]

would print:

tab[0] = 41
1] = 42
2] = 43

instead of:

tab[0] = 41
tab[1] = 42
tab[2] = 43

At scan time, the format is read a first time
to take extra scanning arguments represent-
ing the optional readers (see the semantic of
scanf "%r"). The readers are stored in a het-
erogeneous list. The scanning of the stream is
then performed according to the format con-
tents. Sub-strings are extracted, converted on
the fly and stored in an accumulator imple-
mented by a heterogeneous list. Finally, the
callback function is applied to the contents of
the accumulator at once.

Let us mention that, as for the printing func-
tions, the execution order is mandatory. How-
ever, the reason is different: it is here for
the management of errors. Indeed, we must
not start scanning until all arguments (the op-
tional readers and the callback function) are
received, and we must not start to partially
call the callback function until the scanning
has successfully finished.

5 Issues

As mentioned above, execution order of print-
ing and scanning functions must be carefully
kept to preserve the semantics of the current
implementation (which appears to be a good
compromise in practice). It implies multiple
usages of heterogeneous lists to store printing
arguments, readers and scanned values. They
are other interesting usages of GADTs.

The compatibility with the current imple-
mentation was also a challenge. In particu-
lar, ’@’ has a different meaning for Printf (for
which ’@’ is a standard character), Format (for
which ’@’ is an escaped character used to man-
age boxes and separators) and Scanf (see the
scanf "%s@X" syntax). In addition, some for-
mat constructions are specific to some mod-
ules. For instance, "%a" and "%t" are used
for printing and are meaningless for scanning,
"%r", "%[a-z]" and "%_" are used for scanning
but are meaningless for printing. These are the
reasons why it was difficult to define a unified
type for formats.

Finally, the factorisation of the parsing code
for formats between the OCaml type-checker
and the scanning functions was a challenge.
This implementation required multiple hacks
using original forms of GADTs.

6 Conclusion

This new implementation of formats would
have a positive impact on the OCaml commu-
nity. In fact, it does improve performance, fixes
a lot of bugs, tidies and stabilises the code. Fi-
nally, it is a real usage of GADTs to elegantly
solve a complicated problem.

